Projects Parts Database Forum Sign in. Part Bot. Remove from Library Add to Library. Datasheets

Author:Keshicage Dugore
Language:English (Spanish)
Published (Last):25 September 2017
PDF File Size:1.40 Mb
ePub File Size:19.82 Mb
Price:Free* [*Free Regsitration Required]

Dt Sheet. BB INA Its versatile 3-op amp design and small size make it ideal for a wide range of applications. A single external resistor sets any gain from 1 to 10, Tucson Blvd. See text for discussion of low power supply and single power supply operation. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. Continuous Operating Temperature Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The stability and temperature drift of the external gain setting resistor, RG, also affects gain. Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error possibly an unstable gain error in gains of approximately or greater.

The output is referred to the output reference Ref terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. This is due to the current-feedback topology of the INA Settling time also remains excellent at high gain.

This is a result of its current-feedback topology and is not an indication of instability. A simple pole at kHz or lower will produce a flat passband unity gain response. Commonly used gains and resistor values are shown in Figure 1. These on-chip metal film resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA Basic Connections.

Low frequency noise of the INA is approximately 0. This provides dramatically improved noise when compared to stateof-the-art chopper-stabilized amplifiers. Microphone, Hydrophone etc. Most applications require no external offset adjustment.

Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. The op amp buffer provides low impedance at the Ref terminal to preserve good commonmode rejection. As a differential input voltage causes the output voltage to increase, however, the linear input range will be limited by the output voltage swing of amplifiers A1 and A2. Thus, the linear common-mode input range is related to the output voltage of the complete amplifier.

Optional Trimming of Output Offset Voltage. Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA will be near 0V even though both inputs are overloaded. However, a path must be provided for the input bias current of both inputs.

High input impedance means that this input bias current changes very little with varying input voltage. Most parameters vary only slightly throughout this supply voltage range— see typical performance curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input commonmode range with low power supply voltage. Input circuitry must provide a path for this input bias current for proper operation.

Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the commonmode range of the INA and the input amplifiers will saturate. If the differential source resistance is low, the bias current return path can be connected to one input see the thermocouple example in Figure 3. With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

Figure 5 shows a basic single supply circuit. The output Ref terminal is connected to ground. Zero differential input voltage will demand an output voltage of 0V ground.

Actual output voltage swing is limited to approximately 35mV above ground, when the load is referred to ground as shown. Internal circuitry on each input provides low series impedance under normal signal conditions.

To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 1. The inputs are protected even if the power supplies are disconnected or turned off. You cannot, for instance, connect the inverting input to ground and measure a voltage connected to the non-inverting input. To illustrate the issues affecting low voltage operation, consider the circuit in Figure 5.

It shows the INA, operating from a single 3V supply. The more detailed diagram shown here provides additional insight into its operation. The output difference amp, A3, removes the common-mode component of the input signal and refers the output signal to the Ref terminal.

Each input is protected by two FET transistors that provide a low series resistance under normal signal conditions, preserving excellent noise performance. When excessive voltage is applied, these transistors limit input current to approximately 1. Equations in the figure describe the output voltages of A1 and A2.

Single-Supply Bridge Amplifier. AC-Coupled Instrumentation Amplifier. Differential Voltage to Current Converter. Open as PDF.


INA118 AMPLIFIER. Datasheet pdf. Equivalent

The high accuracy of the LT is due to a 20ppm maximum nonlinearity and 0. Previous monolithic instrumentation amps cannot handle a 2k load resistor whereas the nonlinearity of the LT is specified for loads as low as 2k. Low input bias currents of pA max are achieved with the use of superbeta processing. The output can handle capacitive loads up to pF in any gain configuration while the inputs are ESD protected up to 13kV human body. These advantages make the LT the most cost effective solution for precision instrumentation amplifier applications. At least one model within this product family is in production and available for purchase. The product is appropriate for new designs but newer alternatives may exist.


Sierra IC Inc


Related Articles