Основные физические свойства жидкости

Неньютоновские жидкости и их свойства

Свойства газов, жидкостей, твердых тел являются объектом изучения в физике, а также в некоторых смежных дисциплинах. Однако, помимо традиционных жидких веществ, существуют еще так называемые неньютоновские вещества, которые также изучаются этой наукой. Что они собой представляют и почему получили такое название?

Чтобы понять, что такое такие соединения, приведем самые распространенные бытовые примеры:

  • раствор крахмала в воде и так далее.
  • «резинка для рук», или жевательная резинка для рук;
  • «слизь», в которую играют дети;
  • обычная строительная краска;

То есть это жидкости, вязкость которых подчиняется градиенту скорости. Чем быстрее удар, тем выше индекс вязкости. Поэтому при сильном ударе ручной резины о пол она превращается в полностью твердое вещество, которое может расколоться.

Если оставить его в покое, за считанные минуты он буквально растечется в липкую лужу. Неньютоновские жидкости — это уникальные по своим свойствам вещества, которые нашли применение не только в технических целях, но и в культурной и повседневной жизни.

Вязкость и теплоемкость жидкости

Рисунок 3. Вязкость жидкости. Автор24 — интернет-биржа студенческих работ

Физические свойства жидкости весьма уникальны и многогранны. Но самым уникальным из них является такое явление, как вязкость. Что это такое и чем определяется? Главные показатели, от которых непосредственно зависит рассматриваемая физическая величина, это: градиент скорости движения и касательное напряжение.

Зависимость указанных параметров всегда линейная. Если же сформулировать данный процесс более простыми словам, то вязкость, как и внутренний объем, — это такие характеристики жидкостей и газов, выступающие для них общими и подразумевающие неограниченное движение независимо от внешних факторов воздействия. То есть, если вода вытекает из какого-либо сосуда, она будет продолжать это делать при любых условиях (трение, сила тяжести и других параметрах).

В этом состоит основное отличие от неньютоновских жидкостей, обладающих большей вязкостью, что помогает им оставлять вслед за движением среды, которая заполняется со временем. Этот показатель напрямую зависит от:

  1. Температуры. С повышением температуры вязкость одних элементов увеличивается, а других, наоборот, падает. На такой процесс влияет конкретное соединение и химическое строение жидкости.
  2. Давления. Повышение автоматически вызывает увеличение параметра вязкости.
  3. Химического состава самого вещества. Вязкость изменяется при наличии определенных примесей и посторонних компонентов в навеске чистого элемента.

Теплоемкость определяет способность физического вещества поглощать любое количество тепла для дальнейшего увеличения собственной температуры примерно на один градус по Цельсию. Существуют различные соединения по указанному показателю. Одни оснащены большей, другие меньшей теплоемкостью.

Пример 2

Например, вода — очень хороший и самый яркий теплонакопитель, что помогает широко использовать ее для систем отопления, приготовления еды и прочих нужд.

В целом, сам показатель теплоемкости в конкретной ситуации может меняться, так как строго индивидуален для отдельно взятого объекта.

Классификация жидких тел

Это разделение основано на свойствах жидкостей, их структуре и химической структуре, а также на типах взаимодействий между частицами, составляющими соединение.

  1. Такие жидкости, состоящие из атомов, удерживаемых вместе силами Ван-дер-Ваальса. Примеры — жидкие газы (аргон, метан и другие).
  2. Такие вещества, которые состоят из двух одинаковых атомов. Примеры: газ в сжиженном виде — водород, азот, кислород и другие.
  3. Жидкие металлы — это ртуть.
  4. Вещества, состоящие из элементов, связанных ковалентными полярными связями. Примеры: соляная кислота, йодоводород, сероводород и другие.
  5. Соединения, в которых присутствуют водородные связи. Примеры: вода, спирты, аммиак в растворе.

Также существуют особые структуры, такие как жидкие кристаллы, неньютоновские жидкости, которые обладают особыми свойствами.

Мы рассмотрим основные свойства жидкости, которые отличают ее от всех других агрегатных состояний. В первую очередь, это то, что принято называть физическими.

Зависимость свойств от температуры

К ним относятся три параметра, характеризующие рассматриваемые нами вещества:

  • кипячение.
  • охлаждение;
  • перегрев;

Свойства перегрева и переохлаждения жидкостей напрямую связаны с критическими температурами кипения и замерзания (точки) соответственно. Перегретой называется жидкость, которая превысила порог критической точки нагрева при воздействии температуры, но не показала внешних признаков кипения.

Переохлажденной, соответственно, называют жидкость, перешедшую порог критической точки перехода в другую фазу под воздействием низких температур, но не ставшую твердой.

И в первом, и во втором случае есть условия для проявления таких свойств.

  1. Отсутствие механических воздействий на систему (движение, вибрация).
  2. Равномерная температура, без резких скачков и перепадов.

Интересным фактом является то, что если в перегретую жидкость (например, воду) бросить посторонний предмет, она мгновенно закипит. Его можно получить при нагревании под воздействием излучения (в микроволновой печи).

Основные физические свойства жидкостей

В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.

Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным — все газы.

Гидравлика изучает капельные жидкости. При решении практических задач гидравлики часто пользуются понятием идеальной жидкости — несжимаемой среды, не обладающей внутренним трением между отдельными частицами.

К основным физическим свойствам жидкости относятся плотность, давление, сжимаемость, температурное расширение, вязкость.

Плотность — это отношение массы к объему, занимаемому этой массой. Плотность измеряют в системе СИ в килограммах на кубический метр (кг/м3). Плотность воды составляет 1000 кг/м3.

Используются также укрупненные показатели: – килопаскаль — 1 кПа= 103 Па; – мегапаскаль — 1 МПа = 106 Па.

Сжимаемость жидкости — это ее свойство изменять объем при изменении давления. Это свойство характеризуется коэффициентом объемного сжатия или сжимаемости, выражающим относительное уменьшение объема жидкости при увеличении давления на единицу площади. Для расчетов в области строительной гидравлики воду считают несжимаемой. В связи с этим при решении практических задач сжимаемостью жидкости обычно пренебрегают.

Величина, обратная коэффициенту объемного сжатия, называется модулем упругости. Модуль упругости измеряется в паскалях.

Температурное расширение жидкости при ее нагревании характеризуется коэффициентом температурного расширения, который показывает относительное увеличение объема жидкости при изменении температуры на 1 С.

В отличие от других тел объем воды при ее нагревании от 0 до 4 °С уменьшается. При 4 °С вода имеет наибольшую плотность и наибольший удельный вес; при дальнейшем нагревании ее объем увеличивается. Однако в расчетах многих сооружений при незначительных изменениях температуры воды и давления изменением этого коэффициента можно пренебречь.

Вязкость жидкости — ее свойство оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Силы, возникающие в результате скольжения слоев жидкости, называют силами внутреннего трения, или силами вязкости.

Силы вязкости проявляются при движении реальной жидкости. Если жидкость находится в покое, то вязкость ее может быть принята равной нулю. С увеличением температуры вязкость жидкости быстро уменьшается; остается почти постоянной при изменении давления.

ЧОсновы гидростатикиПонятие о гидравлике

Текучесть и сжимаемость

Для твердых и жидких тел выделяют ряд общих свойств. Одним из них стала текучесть. Для жидкостей она носит неограниченный характер. Оно возникает при воздействии внешних усилий к исследуемому объекту. В этом случае существует несколько вариантов развития событий. Жидкости в зависимости от степени и интенсивности воздействия может разделиться на два объекта или может начать перетекать. Новые части точно также заполнят объем сосуда, поскольку каждая из них не теряет первоначальных свойств.

Также жидкости чутко реагируют на воздействие различной температуры. Самая большая метаморфоза происходит при изменении агрегатного состояния вещества. Это достигается в процессе нагрева, охлаждения или кипения.

Сжимаемость характерна больше для газообразной жидкости. Они могут поддаваться сжатию при возникновении определенных условий. Одной из особенностей этого свойства является скорость всего процесса, а также его равномерность.

Помимо этого, жидкости могут испаряться и вновь конденсироваться. При испарении процесс характеризуется постепенным переходом вещества из жидкого агрегатного состояния в твердое. Конденсация обозначает обратный процесс по отношению к испарению.

Классификация и свойства жидких тел

Рисунок 2. Свойства жидкости. Автор24 — интернет-биржа студенческих работ

В основу указанного деления были положены характеристики жидкостей, их химическое строение и структура, а также виды взаимодействий между основными составляющими соединения частицами. Такие жидкости, состоящие из атомов, способны удерживаться между собой физическими силами Ван-дер-Ваальса.

Пример 1

Примерами могут выступать жидкие газы (метан аргон и другие) а еще такие элементы, которые включают в себя два одинаковых атома: газы в сжиженном виде и жидкие металлы. Вещества, состоящие из частиц, связанных ковалентными полярными соединениями могут также удерживать взаимосвязь, например, сероводород, хлороводород и йодоводород.

Структуры, обладающие прочными водородными связи. Примеры: спирты, вода и аммиак в растворе.

Существуют и особенные структурные элементы – типа неньютоновских жидкостей и жидких кристаллов, которые оснащены универсальными свойствами.

На сегодняшний день исследователи выделяют примерно 15 характеристик, позволяющие детально описать, что же представляют собой рассматриваемые физические тела, и в чем заключается их особенности и ценность. Самые первые физические характеристики жидкости, которые приходят на ум при упоминании данного агрегатного состояния, это возможность менять начальную форму и занимать в пространстве определенный объем. Так, например, если вспомнить форму жидких веществ, то многие считают ее отсутствующей. Однако это совершенно не так.

Замечание 1

Под воздействием всем известной силы тяжести капли любого жидкого элемента подвергаются незначительной деформации, в результате чего их форма нарушается и становится неоднозначной.

Однако если поместить каплю в такие условия, при которых гравитация не влияет или практически ограничена, то она вновь примет идеальную шарообразную форму.

Основные физические свойства жидкости

Подобно твердому телу, жидкость обладает малой сжимаемостью и большой плотностью. Подобно газу, она не имеет упругости формы и легко течет. Молекулы жидкости, как и частицы твердого тела, совершают тепловые колебания, однако их положение равновесия время от времени изменяется, что и обеспечивает текучесть.

Также жидкости свойственна капиллярность — способность подниматься и опускаться в узких сосудах. Общая величина поверхности жидкости мала, и влияние стенок распространяется на всю поверхность. Сосуд в данном случае считается достаточно узким, капиллярным, если его размеры сравнимы с радиусом кривизны поверхности жидкости в нем. Это явление используют для обнаружения трещин размером от 1 мкм, не видных невооруженным глазом.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Классификация жидких тел 

Жидкости делятся на ньютоновские, т.е. подчиняющиеся законам вязкого трения Ньютона, и неньютоновские.

Каждая молекула жидкости плотно окружена со всех сторон своими ближайшими соседями, находящимися на расстояниях порядка ее диаметра \delta. Она колеблется вокруг положения равновесия, а затем резко перепрыгивает к новому центру колебаний. За секунду молекула успевает сменить место «оседлой жизни» около 100 миллионов раз, совершив между перескоками от тысячи до 100 тысяч колебаний. Чем сильнее межмолекулярное взаимодействие, тем ниже подвижность молекул и больше вязкость. Если на колеблющуюся молекулу действует постоянная внешняя сила, например, со стороны соседнего движущегося слоя, то в направлении этой силы частица будет совершать больше скачков, чем в противоположном. Поэтому и на ее хаотические блуждания наложится упорядоченное перемещение со скоростью\( v\;=\;(N_1\;-\;N_2)\;\times\;\delta.\)

\(\delta\) здесь — длина одного скачка, \(N_1\) и \(N_2\) — среднее число скачков за одну секунду в направлении силы и в противоположном направлении соответственно.

Приложенная сила совершает работу по раздвиганию тех молекул, между которыми протискивается рассматриваемая частица. Эта работа в конечном счете идет на увеличение скорости беспорядочного теплового движения молекул. Скорость упорядоченного движения не меняется со временем, т.е. течение жидкости равномерное, несмотря на действие внешней силы. Значит, приложенную силу уравновешивает сила сопротивления, которая определяется вязкостью. При увеличении температуры подвижность молекул возрастает. Это приводит к уменьшению силы сопротивления, так как в нагретой жидкости чаще создаются благоприятные условия для перемещения частиц в направлении приложенной силы.

Ньютон предположил, что величина этой силы, называемой силой внутреннего трения, пропорциональна разности скоростей элементов жидкости. Конечно, в сплошной среде никаких элементов нет и это понятие используют лишь для наглядности, а скорость жидкости распределена непрерывно. Следовательно, сила внутреннего трения F пропорциональна изменению скорости жидкости v в направлении, перпендикулярном движению, и зависит от площади S соприкосновения элементов жидкости:

\(F\;=\;\eta\;\times\;\frac{d\;\times\;v}{d\;\times\;n}\;\times\;S.\)

Это закон вязкого трения Ньютона. Жидкости, в которых внутреннее трение подобным образом зависит от изменения скорости, называются ньютоновскими, или жидкостями с линейной вязкостью. Вода, бензин, спирт, глицерин и многие другие жидкости являются ньютоновскими.

Но среди жидкостей довольно часто можно встретить такие, динамика которых описывается более сложными соотношениями: например, загустевающие краски, лаки, строительные растворы, мед, смолы, глинистые и болотистые почвы и др.

Первые модели неньютоновских жидких сред были предложены во второй половине XIX века Джеймсом Кларком Максвеллом и Уильямом Томсоном. В ХХ веке благодаря работам Бингама и Рейнера этот раздел механики сплошных сред стал самостоятельной наукой, которая носит название реология, произошедшее от греческого слова «реос» — «течение», «поток».

Понравилась статья? Поделиться с друзьями:
Карта знаний
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: