Полевые транзисторы с изолированным затвором. Устройство и принцип действия
Полевой транзистор с изолированным затвором (МДП-транзистор, MOSFET) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. МДП-транзисторы (структура: металл-диэлектрик-полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. отсюда другое название этих транзисторов – МОП – транзисторы (структура: металл-окисел-полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012 … 1014Ом).
Полевые транзисторы – это однополярные устройства, как и обычные полевые транзисторы. То есть управляемый ток не должен проходить через PN переход. В транзисторе имеется PN переход, но его единственное назначение – обеспечить непроводящую обедненную область, которая используется для ограничения тока через канал.
Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП-транзисторы выполняют двух типов – со встроенным и с индуцированным каналом.
Полевые транзисторы разных размеров
Рассмотрим особенности МДП-транзисторов со встроенным каналом. Конструкция такого транзистора с каналом n-типа показана на рис. 4, а. В исходной пластинке кремния р- типа с относительно высоким удельным сопротивлением, которую называют подложкой, с помощью диффузионной технологии созданы две сильнолегированные области с противоположным типом электропроводности – n. На эти области нанесены металлические электроды – исток и сток. Между истоком и стоком имеется тонкий приповерхностный канал с электропроводностью n- типа. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. На слой диэлектрика нанесен металлический электрод – затвор. Наличие слоя диэлектрика позволяет в таком полевом транзисторе подавать на затвор управляющее напряжение обеих полярностей.
Основные характеристики полевых транзисторов.
Основные параметры полевых транзисторов:
- Максимально допустимая постоянная рассеиваемая мощность;
- Максимально допустимая рабочая частота;
- Напряжение сток-исток;
- Напряжение затвор-сток;
- Напряжение затвор-исток;
- Максимально допустимый ток стока;
- Ток утечки затвора;
- Крутизна характеристики;
- Начальный ток стока;
- Емкость затвор-исток;
- Входная ёмкость;
- Выходная ёмкость;
- Проходная ёмкость;
- Выходная мощность;
- Коэффициент шума;
- Коэффициент усиления по мощности.
Полевые транзисторы разных размеров
Выходные характеристики
Семейство выходных характеристик транзистора с управляющим рп-переходом в схеме с общим истоком показано на рис. 26.4. Они аналогичны выходным характеристикам биполярного транзистора. Эти характеристики показывают зависимость выходного тока ID от выходного напряжения VDS(напряжения между стоком и истоком) для заданных Значений напряжения на затворе VGS(напряжения между затвором и истоком).
Диапазон изменения смещающего напряжения затвор-исток довольно велик (несколько вольт) в отличие от биполярного транзистора, где напряжение база-эмиттер практически постоянно. Видно, что при увеличении (по абсолютной величине) напряжения на затворе ток стока уменьшается. Это уменьшение происходит до тех пор, пока расширяющийся обедненный слой перехода затвор-канал не перекроет весь канал, останавливая протекание тока. В этом случае говорят, что полевой транзистор находится в состоянии отсечки.
Схема полевого транзистора.
Напряжение отсечки
рассмотрим выходную характеристику для VGS= 0. При увеличении напряжения VDS(от нулевого значения) ток стока постепенно увеличивается, пока не достигает точки Р, после которой величина тока практически не изменяется. Напряжение в точке Р называется напряжением отсечки. При этом напряжении обедненный слой, связанный с обратносмещенным переходом затвор-канал, почти полностью перекрывает канал. Однако протекание тока IDв этой точке не прекращается, поскольку благодаря этому току как раз и создается обедненный слой. Все кривые семейства выходных характеристик имеют свои точки отсечки: P1, P2 и т. д. Если соединить эти точки друг с другом линией, то правее ее лежит область отсечки, являющаяся рабочей областью полевого транзистора.
Полевой транзистор.
Усилитель на полевом транзисторе с общим истоком
Схема типичного усилителя ЗЧ на полевом транзисторе показана на рис. 26.5. В этой схеме через резистор утечки R1 отводится на шасси очень малый ток утечки затвора. Резистор R3 обеспечивает необходимое обратное смещение, поднимая потенциал истока выше потенциала затвора. Кроме того, этот резистор обеспечивает также стабильность режима усилителя по постоянному току. R2 – нагрузочный резистор, который может иметь очень большое сопротивление (до 1,5 МОм). Развязывающий конденсатор С2 в цепи истока устраняет отрицательную обратную связь по переменному току через резистор R3. Следует отметить, что разделительный конденсатор С1 может иметь небольшую емкость (0,1 мкФ) благодаря высокому входному сопротивлению полевого транзистора.
При подаче сигнала на вход усилителя изменяется ток стока, вызывая, в свою очередь, изменение выходного напряжения на стоке транзистора. Во время положительного полупериода входного сигнала напряжение на затворе увеличивается в положительном направлении, обратное напряжение смещения перехода затвор-исток уменьшается и, следовательно, увеличивается ток IDполевого транзистора. Увеличение ID приводит к уменьшению выходного (стокового) напряжения, и на выходе воспроизводится отрицательный полупериод усиленного сигнала. И наоборот, отрицательному полупериоду входного сигнала соответствует положительный полупериод выходного сигнала. Таким образом, входной и выходной сигналы усилителя с общим истоком находятся в противофазе.
Типы МОП-транзисторов
Униполярные транзисторы делятся на p-канальные или n-канальные. Они могут иметь:
Собственный (встроенный) канал. Без напряжения канал открыт. Для закрытия канала необходимо подать ток определенной полярности.
Индуцированный (инверсный) канал. При отсутствии приложенного электротока он закрыт. Для его открытия прикладывают напряжение нужной полярности. Для n-канальных транзисторов отпирающим является напряжение, положительное относительно истока. Его величина должна быть больше порогового значения, установленного для данного транзистора. Для p-канальных моделей отпирающим будет отрицательное относительно истока напряжение, приложенное к затвору.
- устройство под управлением р — n перехода;
- устройство с изолированным затвором или с барьером Шоттки.
Откуда пошло название «МОП»
Если «разрезать» МОП-транзистор, то можно увидеть вот такую картину.
С точки зрения еды на вашем столе, МОП-транзистор будет больше похож на бутерброд. — толстый кусок хлеба, диэлектрик — тонкий слой колбасы, слой металла — тонкая пластинку сыра. В результате у нас получается вот такой бутерброд.
А как будет строение транзистора сверху-вниз? Сыр — металлическая пластинка, колбаса — диэлектрик, хлеб — полупроводник. Следовательно, получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП — Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором. А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать почти стекло, то и вместо названия «диэлектрик» взяли название «оксид, окисел», и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места).
Далее по тексту МОП-транзистор условимся называть просто полевой транзистор. Так будет проще.
Строение полевого транзистора
Давайте еще раз рассмотрим структуру полевого транзистора.
Имеем «кирпич» полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому, их концентрация намного больше, чем электронов. Но электроны также есть и в P-полупроводнике. Как вы помните, электроны в P-полупроводнике — это неосновные носители и их концентрация очень мала, по сравнению с дырками. «Кирпич» P-полупроводника носит название Подложки. От подложки выходит вывод с таким же названием: подложка.
Другие слои — это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.
Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод. Называется этот вывод Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.
Мы видим, что полевой транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор и Подложка), а реальный транзистор имеет только 3 вывода.
В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:
Поэтому, следует соблюдать цоколевку при подключении МОП-транзистора в схему.
Характеристики полевого МОП транзистора
Для того, чтобы узнать характеристики транзистора, нам надо открыть на него даташит и рассмотреть небольшую табличку на первой странице даташита. Будем рассматривать транзистор, который мы использовали в своих опытах: IRFZ44N.
Напряжение VGS — это напряжение между Затвором и Истоком. Смотрим на даташит и видим, что максимальное напряжение, которое можно подать на Затвор это +-20 Вольт. Более 20 Вольт в обе стороны пробьет тончайший слой диэлектрика, и транзистор придет в негодное состояние.
Максимальная сила тока ID , которая может течь через канал Сток-Исток.
Как мы видим, транзистор в легкую может протащить через себя 49 Ампер!!!
Но это при температуре кристалла 25 градусов по Цельсию. А так номинальная сила тока 35 Ампер при температуре кристалла 100 градусов, что чаще всего и происходит на практике.
RDS(on) — сопротивление полностью открытого канала Стока-Истока. В режиме насыщения, сопротивление канала транзистора достигает ну очень малого значения. Как вы видите, у нашего подопечного сопротивление канала достигает 17,5 мОм (при условии, что напряжение на Затворе = 10 Вольт, а ток Стока = 25 Ампер).
Максимальная рассеиваемая мощность PD — это мощность, которую транзистор может рассеять на себе, превращая эту мощность в тепло. В нашем случае это 94 Ватта. Но здесь также должны быть соблюдены различные условия — это температура окружающей среды, а также есть ли у транзистора радиатор.
Также различные зависимости одних параметров от других можно увидеть в даташите на последних страницах.
Например, ниже на графике приводится зависимость тока Стока от напряжения Стока-Истока при каких-то фиксированных значениях напряжения на Затворе при температуре кристалла (подложки) 25 градусов Цельсия (комнатная температура). Верхняя линия графика приводится для напряжения 15 Вольт на Затворе. Другие линии в порядке очереди по табличке вверху слева:
Также есть интересная зависимость сопротивления канала полностью открытого транзистора от температуры кристалла:
Если посмотреть на график, то можно увидеть, что при температуре кристалла в 140 градусов по Цельсию у нас сопротивление канала увеличивается вдвое. А при отрицательных температурах наоборот уменьшается.
Устройство транзистора.
Дадим схематическое изображение структуры полевого транзистора с управляющим переходом и каналом p-типа. (рис. 1.85) и условное графическое обозначение этого транзистора (рис. 1.86, а). Стрелка указывает направление от слоя pк слою n (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть меньше 1 мкм.
Удельное сопротивление слоя n(затвора) намного меньше удельного сопротивления слоя p (канала), поэтому область p-n-перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое р.
Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющим p-n-переходом и каналом n-типа, его условное графическое обозначение представлено на рис. 1.86, б.
Обозначения электродов сток и исток достаточно условны. Если взять любой полевой транзистор, не подсоединенный к какой-либо цепи, то совсем нет разницы какой вывод корпуса сток, а какой исток. Имя электрода определяется его расположения в схеме.
Работа полевого транзистора JFET с N-каналом
Напряжение на затворе Uзи = 0. Подсоединим источник питания плюсом к стоку, минус к истоку. Затвор также подключим на общий. Начнем плавно увеличивать напряжение на стоке Uси. Пока оно мало, ширина канала наибольшая. В таком виде полевой транзистор выглядит как обычный проводник. Чем выше уровень напряжения Uси, тем выше ток через канал между стоком и истоком Iси. Это состояние иногда именуют омической областью.
С увеличением Uси, в областях N-типа плавно снижается количество электронов – образуется обедненный слой. Он растет несимметрично, сильнее со стороны стока, т.к туда подсоединен источник питания. В результате канал становится уже и при последующем повышении напряжения Uси, ток Iси будет увеличиваться на очень малые значения. Это состояние получило название режим насыщения.
Полупроводниковые приборы, работа которых основана на модуляции сопротивления полупроводникового материала поперечным электрическим полем, называются полевыми транзисторами.
У них в создании электрического тока участвуют носители заряда только одного типа (электроны либо дырки).
Полевые транзисторы бывают двух видов:
— с управляющим p-n-переходом;— со структурой металл-диэлектрик-полупроводник (МДП)
Транзистор с управляющим p-n-переходом представляет собой пластину (участок) из полупроводникового материала с электропроводностью p- либо n-типа, к торцам которой подсоединены электроды — сток и исток. Вдоль пластины выполнен электрический переход (p-n-переход или барьер Шотки), от которого выведен электрод — затвор.
Полевым транзистором называется полупроводниковый прибор, Усилитель ные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал, управляемый электричёским полем. Действие полевого транзистора обусловлено носителями заряда одной полярности.
Таким образом, в пластинке полупроводника, не охваченной запирающим слоем, образуется токопроводящий канал, сечение которого зависит от толщины ОПЗ. Если включить источник питания Е2, как, показано на [рис. 6.1, то через пластинку полупроводника, между выпрямляющими контактами потечет ток. Область в полупроводнике, в которой регулируется поток носителей заряда, называют проводящим каналом.
Электрод полевого транзистора, через который в проводящий канал втекают носители заряда, называют истоком, а электрод, через который они вытекают из канала, — стоком.
Электрод полевого транзистора, на который подается электрический сигнал» используемый для управления величиной тока, протекающего через канал, называют затвором.
Поскольку р-n — переход включен в обратном направлении, входное сопротивление прибора очень велико.
Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.
Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет,
поскольку между зонами N+ находиться область P, не пропускающая электроны.
Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле.
Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором
концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным
напряжением на затворе.
Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок.
Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси.
Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока.
Такой режим работы полевого транзистора называется режимом обогащения.
Принцип работы МДП-транзистора с каналом P–типа такой же,
только на затвор нужно подавать отрицательное напряжение относительно истока.
Схемы включения полевых транзисторов
Сфера применения полевых транзисторов та же, что и у биполярных. В основном они применяются в качестве усилительных элементов. Биполярные триоды при применении в усилительных каскадах имеют три основные схемы включения:
- с общим коллектором (эмиттерный повторитель);
- с общей базой;
- с общим эмиттером.
Полевые транзисторы включаются подобными способами.
Схема с общим стоком
Схема с общим стоком (истоковый повторитель), так же, как и эмиттерный повторитель на биполярном триоде, усиления по напряжению не дает, но предполагает усиление по току.
Достоинством схемы является высокое входное сопротивление, оно же в некоторых случаях является недостатком – каскад становится чувствительным к электромагнитным помехам. При необходимости Rвх можно уменьшить включением резистора R3.
Схема с общим затвором
Эта схема подобна схеме включения биполярного транзистора с общей базой. Эта схема дает хорошее усиление по напряжению, но усиление по току отсутствует. Как и включение с общей базой, такой вариант применяется нечасто.
Схема с общим истоком
Наиболее распространена схема включения полевых триодов с общим истоком. Её коэффициент усиления зависит от соотношения сопротивления Rс к сопротивлению в цепи стока (для регулировки усиления в цепи стока может быть установлен дополнительный резистор), а также зависит от крутизны характеристики транзистора.
Также полевые транзисторы используются в качестве управляемого сопротивления. Для этого рабочая точка выбирается в пределах линейного участка. По этому принципу можно реализовать управляемый делитель напряжения. А на двухзатворном триоде в таком режиме можно реализовать, например, смеситель для приёмной аппаратуры – на один затвор подается принимаемый сигнал, а на другой – сигнал с гетеродина.
Если принять теорию о том, что история развивается по спирали, можно увидеть закономерность в развитии электроники. Уйдя от ламп, управляемых напряжением, технологии пришли к биполярным транзисторам, которым для управления нужен ток. Спираль сделала полный виток – сейчас наблюдается доминирование униполярных триодов, не требующих, как и лампы, расхода мощности в цепях управления. Куда дальше выведет циклическая кривая – будет видно. Пока альтернативы полевым транзисторам не наблюдается.
Как работает транзистор и где используется?
Что такое биполярный транзистор и какие схемы включения существуют
Назначение, характеристики и аналоги транзистора 13001
Что такое оптрон, как работает, основные характеристики и где применяется
Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность
Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317