Виды диэлектриков и их поляризация
Существующие в физике диэлектрики можно разделить на следующие виды:
- полярные;
- неполярные.
Рисунок 3. Диэлектрики в электростатическом поле. Автор24 — интернет-биржа студенческих работ
Полярные будут состоять из таких молекул, центры распределения положительных и отрицательных зарядов у которых совпадать не будут. Неполярные состоят из атомов или молекул, чьи центры распределения положительных и отрицательных оказываются совпадающими.
Молекулы, таким образом, у этих видов также разные. К полярным диэлектрикам принадлежат: вода, спирты, и др., к неполярным можно отнести водород, инертные газы, кислород, бензол, полиэтилен и др.
Во вторую большую группу веществ, различаемых, согласно их электрическим свойствам, включены диэлектрики (изоляторы), то есть специальные вещества, которые не проводят электрический ток. К диэлектрикам относят: разновидности пластмасс, керамики, кристаллы солей, сухую древесину.
Резкая граница между проводниками и изоляторами отсутствует, поскольку в той или иной степени все вещества обладают способностью к проведению электрического тока, однако в большинстве случаев можно пренебречь плохой проводимостью веществ, при этом считая их идеальными изоляторами.
Поскольку все вещества оказываются состоящими из электрически заряженных частиц, происходит их непосредственное взаимодействие с электрическим полем. В диэлектриках, под воздействием электрического поля, может фиксироваться смещение зарядов на незначительное расстояние, с величиной такого смещения, меньшей размеров молекул и атомов. В то же время, подобные смещения могут спровоцировать довольно значительные последствия, например, в виде возникновения индуцированных зарядов.
В диэлектриках, в отличие от проводников, возникновение индуцированных зарядов может наблюдаться не просто на поверхности, но и внутри их объема. Существуют несколько механизмов диэлектрической поляризации.
Таким образом, механизмы поляризации полярных диэлектриков и неполярных будут различны при сравнении. Дипольные моменты молекул (в отсутствие внешнего поля) будут хаотически ориентированными, по этой причине в любом объеме диэлектрика, содержащем довольно большое число молекул, суммарный дипольный момент оказывается равнозначным нулевому значению.
В рамках внешнего электрического поля на молекулы оказывает непосредственное воздействие вращающий момент, что заставляет молекулы начинают ориентироваться таким образом, что вектор дипольного момента начинает выстраивается вдоль вектора напряженности внешнего поля.
Таким образом, диэлектрик и каждая из его частей приобретает индуцированный дипольный момент, а такой механизм поляризации будет называться ориентационным. В полном объеме ориентации всех молекул оказывает препятствие тепловое хаотическое движение, что объясняет лишь частичную ориентацию молекул диэлектрика по внешнему полю.
Проводники в электростатическом поле
Проводниками являются металлы, электролиты (растворы, проводящие ток) плазма. В металлах носителями зарядов являются свободные электроны, в электролитах – положительные и отрицательные ионы, в плазме – свободные электроны и ионы.
У большинства металлов практически каждый атом теряет электрон и становится положительным ионом. Например, у меди в 1 м3 свободных электронов 1029. Свободные электроны в металлах находятся в непрерывном беспорядочном движении. Скорость такого движения примерно равна 105 м/с (100 км/с).
Не смотря на наличие внутри тела зарядов (свободных электронов и ионов), электрического поля внутри проводника нет. Отдельные заряженные частицы создают микроскопические поля. Но эти поля внутри проводника в среднем компенсируют друг друга (рис. 1).
Если бы это условие не выполнялось, то свободные заряды, под действием кулоновских сил, пришли бы в движение. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль.
Рис. 1
Поместим незаряженный проводник, например, металл, в однородное электростатическое поле с напряженностью \(~\vec E_0\). На свободные электроны начинают действовать электрические силы \(\vec F\), под действием которых электроны приходят в движение (рис. 2). Продолжая беспорядочное движение, электроны начинают смещаться в сторону действия силы (скорость смещения порядка 0,1 мм/с).
Рис. 2
На одной поверхности проводника образуется область с недостатком электронов, на противоположной – с избытком электронов. Это приводит к появлению еще одного электрического поля с напряженностью \( \vec E_{np}\) (рис. 3).
Рис. 3
Общая напряженность \( \vec E\) электрического будет равна
\( \vec E = \vec E_0 + \vec E_{np}, \;\; E = E_0 — E_{np}.\)
Электрическая сила \(F\), действующая на свободные электроны с зарядом q:
\(F = q \cdot E.\)
По мере смещения электронов, заряд на поверхности увеличивается. Это приводит к увеличению напряженности \(E_{np}\) и уменьшению общей напряженности \(E\) (т.к. \(E = E_0 — E_{np}\)). И в какой-то момент напряженность \(E_{np}\) становится равной напряженности внешнего поля \(E_0\), т.е. \(E_{np} = E_0\), и общая напряженность поля внутри проводника становится равной нулю.
Электрическая сила \(F\) в этот момент также становится равной нулю, электроны перестают смещаться, но беспорядочное движение не прекращается. На поверхности проводника остаются электрические заряды.
Явление возникновения электрических зарядов на поверхности проводника под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными.
Доля электронов, которые оказались на поверхности, очень мала. Например, если к медной пластинке толщиной в 1 см приложить напряжение в 1000 В, то эта доля составляет 10–10 % от всех свободных электронов.
Каким бы способом ни был заряжен проводник, внутри него поле отсутствует. Это позволяет использовать заземленные полые проводники со сплошными или сетчатыми стенками для электростатической защиты от внешних электростатических полей. Так, например, для защиты военных складов, служащих для хранения взрывчатых веществ, от удара молнии их окружают заземленной проволочной сетью.
Впервые явление электростатической защиты было обнаружено М.Фарадеем в 1836 году. Он провел интересный опыт. Большая деревянная клетка была оклеена тонкими листами олова, изолирована от земли и сильно заряжена. В клетке находился сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что при приближении к клетке тел, соединенных с землей, проскакивали искры, внутри клетки электрическое поле не обнаруживалось.
Диэлектрическая проницаемость жидких диэлектрикjd
Жидкие диэлектрики могут быть построены из полярных молекул или неполярных.
Значение диэлектрической проницаемости неполярных жидкостей невелики и близки к показателю преломления света.
Зависимость диэлектрической проницаемости неполярной жидкости от температуры связана с уменьшением числа молекул в единице объема, поскольку веществауменьшается с повышением температурыв связи степловым расширением диэлектрикаи уменьшением числа частиц в единицу объема. В области температур плавленияскачкообразно снижается.
Значения n и от частоты напряжения не зависят, поэтому и диэлектрическая проницаемостьнеполярных диэлектриков не зависит от частоты во всем диапазоне, включая оптические частоты.
Значение неполярных жидкостей обычно не превышает 2,5.
Диэлектрическая проницаемость
Таким образом, во всех диэлектриках, помещенных в электростатическое поле, происходит уменьшение напряженности этого поля. Степень ослабления поля зависит от свойств диэлектрика. Для характеристики электрических свойств диэлектриков вводится особая величина, называемая диэлектрической проницаемостью.
Диэлектрическая проницаемость ε — это физическая величина, равная отношению модуля напряженности электрического поля E0 в вакууме к модулю напряженности электростатического поля Ε внутри однородного диэлектрика
\(~\varepsilon = \dfrac{E_0}{E} .\)
Диэлектрическая проницаемость некоторых веществ приведены в таблице 1.
Таблица 1.
Диэлектрическая проницаемость
Вещество | ε | Вещество | ε |
---|---|---|---|
Бензин | 2,0 | Масло | 2,5 |
Вакуум, воздух | 1,0 | Парафин | 2,0 |
Вода дистиллированная | 81 | Резина | 4,5 |
Дерево сухое | 2,9 | Спирт | 26 |
Капрон | 4,3 | Стекло | 7,0 |
Керосин | 2,1 | Фарфор | 5,6 |
Лед | 70 | Эбонит | 3,1 |
В диэлектриках при расчете кулоновских сил, напряженностей и потенциалов полей необходимо учитывать ослабление электрического поля в ε раз. Например,
\(F=\dfrac{k\cdot \left|q_{1} \right|\cdot \left|q_{2} \right|}{\varepsilon \cdot r^{2} } ,\, \, \, E=\dfrac{k\cdot \left|q\right|}{\varepsilon \cdot r^{2} } ,\, \, \, \varphi =\dfrac{k\cdot q}{\varepsilon \cdot r}.\)
Диэлектрическая проницаемость для неполярных и слабополярных жидкостей
Поляризация жидкостей, содержащих дипольные молекулы, определяется одновременно электронной и дипольной поляризацями. Такие жидкости обладают тем большей диэлектрической проницаемостью, чем больше электрический момент диполей и число молекул в единице объема.
Температурная зависимость диэлектрической проницаемости полярных жидкостей более сложная, чем неполярных. Объяснение хода кривых легко дать на основе рассмотрения механизма дипольной поляризации:
Рисунок 1.3. Зависимость диэлектрической проницаемости от температуры для полярной жидкости – совола 1 — 2 —3 —
с повышением температуры в результате ослабления межмолекулярных связей увеличивается ориентация диполей в направлении электрического поля, поэтому дипольно-релаксационная поляризуемость возрастает, однако с повышением температуры возрастает и интенсивность хаотического теплового движения диполей, и выше некоторой температуры ТМдезориентирующее действие теплового движения начинает преобладать над ориентирующим действием электрического поля.
Значительное влияние на дипольной жидкости оказывает частота. На высоких частотах диполи не успевают ориентироваться вслед за изменением направления электрического поля, поэтому ДРП на частотах 10 6 -10 10 Гц и выше практически не происходит, и остается только электронная поляризация. Диэлектрическая проницаемость на этих частотах снижается и становится примерно такой же, как у неполярных диэлектриков (рисунок 1.4).
Рисунок 1.4. Зависимость диэлектрической проницаемости от частоты
Диэлектрическая проницаемость полярных жидкостей, использующихся в качестве технических диэлектриков, изменяется в пределах 3,5 – 5, т.е. заметно повышена по сравнению с неполярных жидкостей.
Поляризация диэлектрика
Существуют диэлектрики, в которых молекулы имеют дипольный момент в отсутствии электрического поля (полярные молекулы). Если поле отсутствует, то полярные молекулы участвуют в тепловом движении, ориентированы беспорядочно. При внесении диэлектрика в поле, молекулы ориентируются в основном в направлении поля. Следовательно, диэлектрик поляризуется. У симметричных молекул, например, $O_2,\ N_2,$ при отсутствии поля центры тяжести отрицательных и положительных зарядов совпадают, вследствие, чего собственного дипольного момента у молекул нет (неполярные молекулы). У несимметричных молекул (${например,\ H}_2O,\ CO$) центры тяжести сдвинуты друг относительно друга, в результате чего молекулы имеют дипольный момент и называются полярными.
Постоянный дипольный момент у большинства молекул диэлектриков имеет порядок ${10}^{-29}-{10}^{-30}Кл\cdot м.\ $ Так, например, у KCl он равен 3,5$\cdot {10}^{-29}Кл\cdot м$, $SO_2-5,3\cdot {10}^{-30}Кл\cdot м.\ $ Дипольные моменты большинства веществ измерены и их можно отыскать в справочниках.
Газообразные диэлектрики
Имея низкую молекулярную плотность (малую величину n), большинство газообразных диэлектриков обладает только электронной поляризацией. Поэтому, у газов, образующих воздух, и у самого воздуха диэлектрическая проницаемость является величиной, примерно равной единице (), и не ни зависит от температуры, ни от частоты приложенного напряжения во всем диапазоне частот, включая оптические, так как от температуры и частоты не зависит электронная поляризуемость.
Воздух как естественная изоляция присутствует во всех электроустановках. Диэлектрическая проницаемость воздуха при нормальных условиях равна 1,00059. С увеличением относительной влажности воздуха диэлектрическая проницаемость возрастает: если при 20 о С и, то при 20 о С и.
Установление равновесия
Дипольный момент $\overrightarrow{p}$, молекулы, которая находится в электрическом поле с напряженностью $\overrightarrow{E,}\ $имеет потенциальную энергию, которая вычисляется по формуле:
Величина $W$ достигает минимального значения в том случае, когда $\overrightarrow{p}\uparrow \uparrow \overrightarrow{E.}$ Так как устойчивым состоянием системы является состояние с минимумом потенциальной энергии, то моменты диполей стремятся повернуться до совпадения с направлением напряженности поля. Этот поворот осуществляет пара сил, которые действуют на диполь в электрическом поле. Тепловое движение, в свою очередь, мешает упорядочивающему действию электрического поля. В результате устанавливается равновесие.
С увеличением напряженности поля дипольные моменты интенсивнее ориентируются вдоль напряженности поля при $\overrightarrow{p}\cdot \overrightarrow{E}\gg kT$, то есть при $\beta \gg 1$, можно считать, что все дипольные моменты параллельны между собой и параллельны полю. Тогда дипольный момент можно записать, используя одну только координатную проекцию, допустим, что поле направлено вдоль оси Z, тогда:
При выполнении условия (2) достигается максимальная поляризованность и если увеличивать напряженность приложенного к диэлектрику поля, то поляризованность не увеличивается. Напряжённость, при которой достигается максимальная поляризованность, называется напряженностью поля насыщения.