Тема №33 «электролитическая диссоциация электролитов в водных растворах и реакции ионного обмена.»

§ 37. основные положения теории электролитической диссоциации

Динамическое равновесие

Слабые электролиты диссоциируют не полностью. Когда они находятся в растворе, процесс диссоциации происходит до определённого момента, потом прекращается. Устанавливается динамическое равновесие. Это явление можно выразить в виде уравнения. Способность вещества диссоциировать на мельчайшие частицы называют константой диссоциации или равновесия.

Чем активнее электролит образует ионы, тем он сильнее, а значит, константа выше. У слабых этот показатель будет ниже. Значения констант диссоциации для разных элементов, из которых состоит таблица Менделеева, приводятся в справочной литературе. Эти показатели применимы только к водным растворам. В неводных химические элементы ведут себя иначе.

Электролитические диссоциация и ассоциация

Почему же растворы элек­тролитов проводят электри­ческий ток?

Шведский ученый С. Ар­рениус, изучая электропро­водность различных веществ, пришел в 1877 г. к выводу, что причиной электропровод­ности является наличие в растворе ионов, которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называ­ется электролитической диссоциацией.

С. Аррениус, который придерживался физиче­ской теории растворов, не учитывал взаимодей­ствия электролита с водой и считал, что в раство­рах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяков- ский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита про­исходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т. е. «одетые в шубку» из молекул воды.

Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом 104,5°, благодаря чему молекула имеет угло­вую форму. Молекула воды схематически представ­лена ниже.

Как правило, легче всего диссоциируют веще­ства с ионной связью и, соответственно, с ионной кристаллической решеткой, так как они уже состо­ят из готовых ионов. При их растворении диполи во­ды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита.

Между ионами электролита и диполями воды возникают силы взаимного притяжения. В ре­зультате связь между ионами ослабевает, и про­исходит переход ионов из кристалла в раствор. Очевидно, что последовательность про­цессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), будет такой:

1) ориентация молекул (диполей) воды около ио­нов кристалла;

2) гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла;

3) диссоциация (распад) кристалла электролита на гидратированные ионы.

Упрощенно происходящие процессы можно от­разить с помощью следующего уравнения:

Аналогично диссоциируют и электролиты, в мо­лекулах которых ковалентная связь (например, мо­лекулы хлороводорода HCl, смотри ниже); только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ион­ную; последовательность процессов, происходящих при этом, будет такой:

1) ориентация молекул воды вокруг полюсов моле­кул электролита;

2) гидратация (взаимодействие) молекул воды с молекулами электролита;

3) ионизация молекул электролита (превращение ковалентной полярной связи в ионную);

4) диссоциация (распад) молекул электролита на гидратированные ионы.

Схема электролитической диссоциации хлорида натрия на гидратированные ионы

Упрощенно процесс диссоциации соляной кис­лоты можно отразить с помощью следующего урав­нения:

Следует учитывать, что в растворах электро­литов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. Ассоциация в растворах происходит параллельно с диссоциацией, поэтому в уравнени­ях реакций ставят знак обратимости.

Схема электролитической диссоциации полярной молекулы хлороводорода на гидратированные ионы

Свойства гидратированных ионов отличаются от свойств негидратированных. Например, негидрати­рованный ион меди Cu2+ — белый в безводных кри­сталлах сульфата меди (II) и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами во­ды Cu2+ • nH2O. Гидратированные ионы имеют как постоянное, так и переменное число молекул воды.

Ионный обмен

В процессе распада кристаллической решётки образуются ионы и молекулы. Состояние, в котором они пребывают, называют динамическим равновесием. Жидкость, содержащая растворившийся сильный электролит, имеет свойства, обусловленные ионами, а та, в которой присутствует слабый, — ещё и молекулами. Например, уксусная кислота обладает характерными вкусом и запахом. Первое свойство объясняется присутствием ионов, второе — содержанием молекул.

Есть ряд характеристик, общих для всех растворов, содержащих сильный электролитический компонент. Так, щёлочи мыльные на ощупь, при этом они способны изменять цвет индикаторов. Эти характеристики объясняются наличием гидроксид-ионов. Растворимые соли приобретают свои характеристики в связи с тем, что в растворенном виде они распадаются на анионы и катионы. Идентичные характеристики кислот обусловлены тем, что в их составе присутствуют ионы оксония H3O.

Некоторые реакции в электролитных растворах протекают с высокой скоростью. Это обусловлено тем, что в них участвуют ионы. Формулы, описывающие эти процессы, называют ионными. Так же именуют и реакции, при этом их классифицируют на обратимые, протекающие до конца, и необратимые. Во втором случае процесс одновременно протекает в прямом и обратном направлениях. Когда ионы вступают в необратимую реакцию, они соединяются и образуют следующие типы элементов и соединений:

  • газообразные;
  • малодиссоциирующие;
  • нерастворимые.

Будет ли реакция обратимой, зависит от того, какие химические элементы есть среди исходных. Если это малорастворимые компоненты или слабые электролиты, диссоциация протекает одновременно с ассоциацией. Следовательно, наблюдается обратимое явление. Для него характерно смещение равновесия. Образуется слабый электролит, при этом остаются гидроксид-ионы и недиссоциированные молекулы.

Если исходные компоненты представляют собой сильные электролиты, диссоциация не происходит. При взаимодействии образуется смесь ионов, при этом реакция не протекает. Сильные электролиты не образуют газов, малодиссоциирующих или нерастворимых веществ. Сколько и какого вещества образуется в результате реакции, определяют с помощью уравнений. Например, при распаде 1 моль нитрата аммония возникает 2 моль анионов и катионов.

Электролиты и неэлектролиты

Не все вещества распадаются на ионы под воздействием воды. Поэтому выделяют две группы веществ:

  • электролиты – молекулы распадаются на ионы;
  • неэлектролиты – молекулы не распадаются на ионы.

К электролитам относятся сложные неорганические вещества:

  • кислоты;
  • основания;
  • расплавы и растворы солей;
  • твёрдые соли;
  • некоторые твёрдые оксиды;
  • гидроксиды.

Неэлектролиты – большинство органических веществ. К ним относятся:

  • альдегиды;
  • кетоны;
  • углеводороды;
  • углеводы.

Сущностью электролитической диссоциации является распад ковалентных полярных или ионных связей. Молекулы воды оттягивают полярные молекулы, увеличивая полярность, и разрывают их на ионы. В расплавах при высокой температуре ионы в кристаллической решётке начинают совершать колебания, которые приводят к разрушению кристалла. Ковалентные неполярные связи, присутствующие в простых веществах, достаточно прочны и не разрываются молекулами воды или при нагревании.

Рис. 2. Молекулы воды образуют ионы натрия и хлора.

Электролиты и неэлектролиты

Хотя электролитическая диссоциация происходит независимо от действия электротока, между этими явлениями есть связь. Чем выше способность вещества распадаться на ионы при взаимодействии с растворителем, тем лучше оно проводит электроток. По такому критерию известный физико-химик М. Фарадей выделил электролиты и неэлектролиты.

Электролиты — это вещества, которые после диссоциации на ионы в растворах и расплавах проводят электроток. Обычно в их молекулах ионные или полярные ковалентные связи.

Неэлектролиты — это вещества, которые не распадаются на ионы в растворах и расплавах, а значит, не обладают проводимостью в растворенном виде. Для них характерны ковалентные неполярные или слабополярные связи.

Степень диссоциации

В зависимости от того, сколько молекул диссоциировало на ионы, вещество может быть сильным или слабым электролитом. Этот показатель называется степенью диссоциации, его измеряют от 0 до 1 либо в процентах.

Степень диссоциации — это отношение количества распавшихся на ионы молей вещества к исходному количеству молей.

или .

Если в растворе на ионы распадаются все 100% электролита, .

По силе электролиты делятся на следующие группы:

  • слабые — ;

  • средние — ;

  • сильные — .

Важно!
Молекулы сильных электролитов необратимо распадаются на ионы, поэтому в уравнениях нужно ставить знак =. Реакции со слабыми электролитами обратимы, поэтому ставится знак ⇄

Механизм электролитической диссоциации

При контакте с водой или другими растворителями диссоциации подвержены все вещества с ионной связью. Также распадаться на ионы могут вещества с ковалентной полярной связью, которая под действием воды переходит в ионную, а после разрушается.

Механизм диссоциации электролитов удобно рассматривать на примере хлорида натрия NaCl. Его кристаллическая решетка образована катионами натрия Na+ и анионами хлора Cl-, которые удерживаются вместе благодаря ионной связи. При растворении в воде каждый кристалл хлорида натрия окружают ее молекулы.

Отметим, что молекулы воды — это диполи. На одном конце они несут атомы водорода с частичным положительным зарядом, а на другом — атомы кислорода с частичным отрицательным. Соответственно, атомы кислорода притягиваются к катионам натрия, а атомы водорода — к анионам хлора. Эта сила электростатического притяжения ослабляет и в итоге разрывает ионную связь между натрием и хлором. Вещество диссоциирует на ионы.

После распада хлорида натрия образовавшиеся ионы Na+ и Cl- окружают молекулы воды, создавая гидратную оболочку. Ионы с такой оболочкой называют гидратированными.

Если вместо воды был использован другой растворитель — например, этанол, его молекулы создают сольватную оболочку. В этом случае ионы называются сольватированными.

Сущность процесса электролитической диссоциации передает схема:

Выберите идеального репетитора по химии
15 000+ проверенных преподавателей со средним рейтингом 4,8. Учтём ваш график и цель обучения
Выбрать!

Что такое электролитическая диссоциация

Как известно, электрический ток — это направленное движение свободных электронов или ионов, т. е. заряженных частиц. В растворах электролитов, проводящих ток, за это отвечают свободные ионы.

В 1882 году шведский химик С

Аррениус при изучении свойств растворов электролитов обратил внимание, что они содержат больше частиц, чем было в сухом веществе. Например, в растворе хлорида натрия 2 моля частиц, а NaCl в сухом виде содержит лишь 1 моль

Это позволило ученому сделать вывод, что при растворении таких веществ в воде в них появляются свободные ионы. Так были заложены основы теории электролитической диссоциации (ТЭД) — в химии она стала одним из важнейших открытий.

Электролитическая диссоциация — это процесс, в ходе которого молекулы электролитов взаимодействуют с водой или другим растворителем и распадаются на ионы. Она может иметь обратимый или необратимый характер. Обратный процесс называется моляризацией.

Благодаря диссоциации растворы электролитов обретают способность проводить ток. Сванте Аррениус не смог объяснить, почему разные вещества сильно отличаются по электропроводности, но это сделал Д. И. Менделеев. Он подробно описал процесс распада электролита на ионы, который объясняется его взаимодействием с молекулами воды (или другого растворителя).

Схема электролитической диссоциации: KA ⇄ K+ (катион) + A- (анион).

Уравнение диссоциации на примере хлорида натрия: NaCl ⇄ Na+ + Cl-.

Говорите правильно
Иногда можно встретить выражение «теория электрической диссоциации», но так говорить не стоит. В этом случае можно подумать, что распад молекул на ионы обусловлен действием электротока. На самом деле процесс диссоциации не зависит от того, проходит ток в данный момент через раствор или нет. Все, что нужно — это контакт электролита с водой (растворителем).

Основные положения теории

Электролитической диссоциации посвящена научная теория, состоящая из 5 постулатов. Первый гласит, что электролиты, растворяясь в воде, распадаются на 2 категории ионов — положительно и отрицательно заряженные. Этот вид частиц представляет собой одну из форм, в которой может существовать химический элемент.

Свойства атомов и ионов различаются. Например, ионы натрия не образуют соединений с водой, а атомы этого же элемента вступают с ней в реакцию. Результатом взаимодействия становятся водород и щёлочь. Атомы и ионы хлора различаются по свойствам: первые токсичны, окрашены в жёлто-зелёный цвет и издают резкий запах, а вторые не пахнут, бесцветны и неядовиты.

Когда один или группа атомов присоединяют или отдают электроны, образуются ионы, несущие отрицательный или положительный заряд. По составу они подразделяются на простые и сложные. Находясь в растворе, эти частицы хаотично и непрерывно движутся.

Суть следующего положения теории заключается в том, что причиной диссоциации является взаимодействие молекул воды и электролита, сопровождающееся разрывом химической связи в последнем. В результате гидратации образуются ионы, связанные с молекулами H2O. По-другому эти частицы называют гидратированными. От негидратированных их отличает наличие водной оболочки.

Третье положение объясняет, как образуются катионы и анионы. Под воздействием электротока отрицательные ионы перемещаются к аноду. Он представляет собой положительный полюс. Эти ионы называют анионами.

Положительно заряженные частицы движутся к катоду — отрицательному полюсу источника электротока. Эти частицы называются катионами. Таким образом, ионы могут классифицироваться по знаку заряда. Растворы электролитов всегда электронейтральны, потому что суммы зарядов катионов и анионов равны.

Согласно четвёртому положению теории, электролитическая диссоциация, происходящая с участием слабых электролитов, является обратимым процессом. Одновременно с распадом вещества на ионы происходит соединение последних.

Молекулярное, полное и сокращенное ионные уравнения

С помощью молекулярных уравнений можно показать состав вещества с разложением его на молекулы. Полные ионные уравнения отражают реакцию диссоциации, т. е. расщепление молекул на ионы. Но в таком виде расписывают только сильные электролиты.

Не раскладывают на ионы:

  • слабые электролиты;

  • осадки;

  • газы.

Рассмотрим это на примере взаимодействия между нитратом свинца и серной кислотой.

Молекулярное уравнение: Pb(NO3)2 + H2SO4 → 2HNO3 + PbSO4

Сульфат свинца PbSO4 мы не будем раскладывать на ионы, поскольку это слабый электролит.

Полное ионное уравнение: Pb2+ + 2NO3— + 2H+ + SO42- → 2H+ + 2NO3— + PbSO4

Сократить это выражение очень просто — нужно убрать из обеих частей одинаковые ионы, которые не изменились в ходе реакции.

Сокращенное ионное уравнение: Pb2+ + SO42- → PbSO4

Как составить уравнение диссоциации

В левой части пишем молекулярную формулу вещества, а в правой — формулы образовавшихся катионов и анионов. Между ними ставим знак =, если это сильный электролит, или знак ⇄ — если средний или слабый. После этого нужно проставить коэффициенты перед ионами и проверить сумму катионов и анионов (она всегда равна 0).

Сильные и слабые электролиты

Сильные электролиты — это электролиты, кото­рые при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов зна­чение степени диссоциации стремится к единице.

К сильным электролитам относятся:

1) все растворимые соли;

2) сильные кислоты, например: H2SO4, HCl, HNO3;

3) все щелочи, например: NaOH, KOH.

Слабые электролиты — это такие электроли­ты, которые при растворении в воде почти не дис­социируют на ионы. У таких электролитов значе­ние степени диссоциации стремится к нулю.

К слабым электролитам относятся:

1) слабые кислоты — H2S, H2CO3, HNO2;

2) водный раствор аммиака NH3 • H2O;

3) вода;

4) некоторые соли.

Электролитическая диссоциация

Водные растворы некоторых веществ являются проводниками электрического тока. Эти вещества относятся к электролитам. Электролитами являются кислоты, основания и соли, расплавы некоторых веществ.

Растворы некоторых веществ в воде не проводят электрический ток. Такие вещества называют неэлектролитами. К ним относятся многие органические соединения, например сахар и спирты.

Теория электролитической диссоциации

Теория электролитической диссоциации была сформулирована шведским ученым С. Аррениусом (1887 г.). Основные положения теории С. Аррениуса:

— электролиты при растворении в воде распадаются (диссоциируют) на положительно и отрицательно заряженные ионы;

— под действием электрического тока положительно заряженные ионы движутся к катоду (катионы), а отрицательно заряженные – к аноду (анионы);

— диссоциация – обратимый процесс

КА К+ + А−

Механизм электролитической диссоциации заключается в ион-дипольном взаимодействии между ионами и диполями воды (рис. 1).

Рис. 1. Электролитическая диссоциация раствора хлорида натрия

Легче всего диссоциируют вещества с ионной связью. Аналогично диссоциация протекает у молекул, образованных по типу полярной ковалентной связи (характер взаимодействия – диполь-дипольный).

Диссоциация кислот, оснований, солей

При диссоциации кислот всегда образуются ионы водорода (H+), а точнее – гидроксония (H3O+), которые отвечают за свойства кислот (кислый вкус, действие индикаторов, взаимодействие с основаниями и т.д.).

HNO3 H+ + NO3−

При диссоциации оснований всегда образуются гидроксид-ионы водорода (OH−), ответственные за свойства оснований (изменение окраски индикаторов, взаимодействие с кислотами и т.д.).

NaOH Na+ + OH−

Соли – это электролиты, при диссоциации которых образуются катионы металлов (или катион аммония NH4+) и анионы кислотных остатков.

CaCl2 Ca2+ + 2Cl−

Многоосновные кислоты и основания диссоциируют ступенчато.

H2SO4 H+ + HSO4− (I ступень)

HSO4− H+ + SO42- (II ступень)

Ca(OH)2 + + OH− (I ступень)

Степень диссоциации

Среди электролитов различают слабые и сильные растворы. Чтобы охарактеризовать эту меру существует понятие и величина степени диссоциации (). Степень диссоциации – отношение числа молекул, продиссоциировавших на ионы к общему числу молекул. часто выражают в %.

= N’ / N

К слабым электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации меньше 3%.

К сильным электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации больше 3%.

На степень диссоциации оказывают особое влияние природа растворителя, природа растворенного вещества, температура (у сильных электролитов с повышением температуры степень диссоциации снижается, а у слабых – проходит через максимум в области температур 60oС), концентрация растворов, введение в раствор одноименных ионов.

Амфотерные электролиты

Существуют электролиты, которые при диссоциации образуют и H+, и OH− ионы. Такие электролиты называют амфотерными, например: Be(OH)2, Zn(OH)2, Sn(OH)2, Al(OH)3, Cr(OH)3 и т.д.

H++RO− ROH R+ + OH−

Ионные уравнения реакций

Реакции в водных растворах электролитов – это реакции между ионами – ионные реакции, которые записывают с помощью ионных уравнений в молекулярной, полной ионной и сокращенной ионной формах. Например:

BaCl2 + Na2SO4 = BaSO4 ↓ + 2NaCl (молекулярная форма)

Ba2+ + 2Cl− + 2Na+ + SO42- = BaSO4 ↓ + 2Na+ + 2Cl− (полная ионная форма)

Ba2+ + SO42- = BaSO4 ↓ (сокращенная ионная форма)

Водородный показатель pH

Вода – слабый электролит, поэтому процесс диссоциации протекает в незначительной степени.

H2O H+ + OH−

К любому равновесию можно применить закон действующих масс и записать выражение для константы равновесия:

K = /

Равновесная концентрация воды – величина постоянная, слеовательно.

K = = KW

Кислотность (основность) водного раствора удобно выражать через десятичный логарифм молярной концентрации ионов водорода, взятый с обратным знаком. Эта величина называется водородным показателем (рН):

рН = — lg

Если раствор нейтральный, то = =10-7, рН =7.

Если среда кислая > 10-7, рН

Если среда щелочная 7

Теория Аррениуса

Аррениус, исследовав тему электропроводности растворов, сформулировал теорию электролитической диссоциации. Основные положения теории до сих пор используются в химии:

  • молекулы электролитов распадаются на катионы и анионы;
  • в растворе электролита катионы движутся к катоду, анионы – к аноду;
  • одновременно с распадом молекул происходит обратный процесс – ионы соединяются в молекулы.

Рис. 3. Сванте Август Аррениус.

В 1891 году Иван Каблуков дополнил теорию Аррениуса. Он ввёл понятие сольватации – электростатического взаимодействия между частицами растворённого вещества и растворителя.

Как диссоциируют разные группы веществ

Диссоциация кислот

Приводит к образованию катионов водорода H+ и отрицательно заряженных кислотных остатков:

HCl = H+ + Cl-

H2SO4 = 2H+ + SO42-

HNO2 ⇄ H+ + NO2-

Многоосновные кислоты диссоциируют ступенчато:

  1. AlOHCl2 = AlOH2+ + 2Cl-

  2. AlOH2+ ⇄ Al3+ + OH-

Диссоциация оснований

Происходит с образованием гидроксильных групп OH- и положительно заряженных ионов металла. Сильные электролиты в растворах диссоциируют полностью, а слабые — ступенчато и обратимо.

Сильные основания:

NaOH = Na+ + OH-

Слабые основания:

  1. Cu(ON)2 ⇄ CuOH+ + OH-

  2. CuOH+ ⇄ Cu2+ + OH-

Диссоциация солей

Ведет к образованию катионов металлов (или катиона аммония) и отрицательно заряженных кислотных остатков.

Средние соли в растворах полностью распадаются в одну ступень.

Na3PO4 = 3Na + PO43-

Кислые соли распадаются ступенчато. На первом этапе отделяются катионы металла, а на втором — катионы водорода.

  1. KHSO4 = K+ + HSO4

  2. HSO4— ⇄ H+ + SO42-

Основные соли также диссоциируют в две ступени. На первой отделяются кислотные остатки, а за ними — гидроксильные группы OH-.

  1. MgOHBr = MgOH+ + Br-

  2. MgOH+ ⇄ Mg2+ + OH-

Понравилась статья? Поделиться с друзьями:
Карта знаний
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: