Интерференция и квантовая теория
Каждое событие, как например прохождение света от источника S до точки M на экране через отверстие может быть представлена в виде вектора _1.» width=»» height=»» />
Для того, чтобы знать вероятность того, что свет дойдет из источника S до точки M, нужно брать во внимание все возможные пути света из точки S до точки М. В квантовой механике этот принцип является фундаментальным
Для получения вероятности P того, что свет дойдет из точки S до точки М, используется следующая аксиома квантовой механики:
Изменение фазы подобно вращению векторов. Сумма двух векторов изменяется от нуля, до максимума .
Опыт Юнга с двумя щелями. Опыт Юнга или эксперемент с двумя щелями
В опыте пучок света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света (влияние ширины прорезей на интерференцию рассматривается ниже). На проекционном экране получается целый ряд чередующихся интерференционных полос, что и было продемонстрировано Томасом Юнгом.
На проекционном экране получается целый ряд чередующихся интерференционных полос, что и было продемонстрировано Томасом Юнгом.Если исходить из того, что свет состоит из частиц (корпускулярная теория света), то на проекционном экране можно было бы увидеть только две параллельные полосы света, прошедшие через прорези ширмы. Между ними проекционный экран оставался бы практически неосвещенным.С другой стороны, если предположить, что свет представляет собой распространяющиеся волны (волновая теория света), то, согласно принципу Гюйгенса, каждая прорезь является источником вторичных волн.Если вторичные волны достигнут линии в середине проекционного экрана, находящейся на равном удалении от прорезей, в одной фазе, то на серединной линии экрана их амплитуды сложатся, что создаст максимум яркости. То есть, максимум яркости окажется там, где, согласно корпускулярной теории, яркость должна быть практически нулевой.С другой стороны, на определённом удалении от центральной линии волны окажутся в противофазе — их амплитуды компенсируются, что создаст минимум яркости (тёмная полоса). По мере дальнейшего удаления от средней линии яркость периодически изменяется, возрастая до максимума и снова убывая.
Интерференционная картина возникает на экране, когда ширина прорезей близка к длине волны излучаемого монохроматического света. Если ширину прорезей увеличивать, то освещённость экрана будет возрастать, но контраст интерференционной картины будет падать вплоть до полного её исчезновения.
Зеркала Френеля
S — точечный источник света;Z1, Z2 — зеркала;S1, S2 — мнимые изображения источника света;E — экран;D — область перекрытия потоков света от мнимых источников, где наблюдается интерференция;B — бленда для защиты от засветки экрана источником света.Для наглядности угол между зеркалами на рисунке утрированно увеличен.
Устройство состоит из двух плоских зеркал Z1 и Z2 , образующих двугранный угол, отличающийся от 180° всего на несколько угловых минут . При освещении зеркал от источника S отражённые от зеркал пучки лучей можно рассматривать как исходящие из когерентных источников S1 и S2 , являющихся мнимыми изображениями S . В пространстве, где пучки перекрываются, возникает интерференция. Если источник S линеен (щель) и параллелен вершине двугранного угла, образованного зеркалами, то при освещении зеркал монохроматическим светом на экране E , который может быть установлен в любом месте в области перекрытия пучков, наблюдается интерференционная картина в виде равноотстоящих тёмных и светлых полос, параллельных щели. По расстоянию между полосами и величине двугранного угла можно определить длину волны света.
Физика 9 кл. Интерференция света. Опыт Юнга
- Подробности
- Обновлено 18.06.2019 17:19
- Просмотров: 400
1. Какие два взгляда на природу света существовали с давних пор среди ученых?
С давних пор существовало два взгляда на природу света — две теории: корпускулярная и волновая.
Одни ученые считали, что свет — это поток частиц (корпускул).
Другие рассматривали свет, как волну.
До начала XIX в. не было доказательств ни в пользу волновых, ни в пользу корпускулярных представлений.
В 1802 г. английский ученый Томас Юнг на опыте показал, что свету присуще свойство интерференции, значит, свет — это волны.
К концу 19 в. в ходе экспериментов стало ясно, что некоторые явления можно объяснить только на основе корпускулярных представлений о свете, т. е. рассматривая его как поток частиц.
В настоящее время признана справедливой как волновая, так и корпускулярная теория.
Обе теории, дополняя друг друга, позволяют объяснять многие физические явления.
2. В чем заключалась суть опыта Юнга, что этот опыт доказывал и когда был поставлен?
В 1802 г. английский ученый Томас Юнг поставил опыт по сложению пучков света от двух источников, в результате чего получил не меняющуюся во времени картину, состоящую из чередующихся светлых и темных полос.
Юнг правильно объяснил возникновение полос интерференцией света.
Однако интерференция присуща только волновым (т. е. периодическим) процессам.
Поэтому oпыт Юнга стал доказательством того, что свет обладает волновыми свойствами.
3. В чем заключается интерференция звуковых волн?
При наложении двух когерентных волн (т. е. волн с одинаковой частотой и постоянной разностью фаз) образуется так называемая интерференционная картина, т. е. не меняющаяся со временем картина распределения амплитуд колебаний в пространстве.
В одних точках пространства колебания всегда происходят с максимальной амплитудой.
Это те точки, в которые колебания от обоих источников в любой момент времени приходят в одинаковых фазах и поэтому всегда усиливают друг друга.
В других точках колебания происходят с минимальной амплитудой.
Эти точки расположены по отношению к источникам так, что к ним колебания всегда приходят в противоположных фазах, ослабляя друг друга (а при равных амплитудах колебаний волны в любой момент времени полностью гасят друг друга).
В остальных точках колебания также происходят с постоянными амплитудами, значения которых лежат в промежутке от минимальной до максимальной.
4. Как на опыте можно получить интерференционную картину света?
На проволочное кольцо с ручкой, затянутое мыльной пленкой, в затемненном помещении направляется свет желтого цвета.
На пленке образуются горизонтально расположенные чередующиеся желтые и черные полосы.
5. Как объяснить появление на мыльной пленке чередующихся полос?
Свет, падая на пленку, частично отражается от передней поверхности в точке А, а частично проходит внутрь пленки и отражается от задней поверхности в точке В, после чего выходит из пленки в точке С.
Волны, выходящие из точек A и C, являются когерентными, т,к. они образуются от одного и того же источника.
Разность хода длин волн зависит от толщины пленки, которая в разных точках различна.
Если толщина пленки окажется такой, что волны будут выходить из точек А и С, имея одинаковые фазы, то эти волны при сложении усилят друг друга.
В результате возникнет максимум интерференционной картины — желтая полоса.
Если толщина пленки окажется такой, что волны будут выходить из точек А и С в противоположных фазах, то эти волны при сложении будут гасить друг друга.
В результате возникнет минимум интерференционной картины — темная полоса.
6. Что доказывает опыт с освещением мыльной пленки?
Этот опыт доказывает, что раз наблюдается явление интерференции, значит, свет обладает волновыми свойствами.
7. Что можно сказать о частоте (или длине волны) световых волн разных цветов?
Томас Юнг измерил еще и длину световой волны.
Оказалось, что свету разных цветов соответствуют волны разной длины (разной частоты).
Например, красному свету в световом диапазоне соответствует самая большая длина волны ( иначе самая маленькая частота).
Длины волн убывают (а частоты возрастают) в следующей последовательности цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.
Следующая страница — смотреть
Назад в «Оглавление» — смотреть
Восстановление волновой модели
Только в 19 веке, когда волновая модель была восстановлена. Во многом благодаря вкладу Томаса Янга, который смог объяснить все явления света на том основании, что свет — это продольная волна.
В частности, в 1801 году он провел свой знаменитый эксперимент с двумя щелями. В этом эксперименте Юнг проверил схему интерференции света от удаленного источника света, когда он дифрагировал после прохождения через две щели.
Точно так же Юнг также объяснил через волновую модель рассеивание белого света в различных цветах радуги. Он показал, что в каждой среде каждый из цветов, составляющих свет, имеет характерную частоту и длину волны.
Таким образом, благодаря этому эксперименту он продемонстрировал волновую природу света.
Интересно, что со временем этот эксперимент оказался ключом к демонстрации корпускулярной волны света, фундаментальной особенности квантовой механики..
Дисперсия света
Каждый из нас когда-нибудь видел, как переливаются лучи на граненых изделиях из стекла или, например, на бриллиантах. Наблюдать это можно благодаря такому явлению, как дисперсия света. Это эффект, отражающий зависимость показателя преломления предмета (вещества, среды) от длины (частоты) световой волны, которая проходит через этот предмет. Следствием такой зависимости является разложение луча на цветовой спектр, например, при прохождении через призму. Дисперсия света выражается следующим равенством:
n = ƒ (ƛ),
где n – показатель преломления, ƛ – частота, а ƒ – длина волны. Показатель преломления увеличивается с ростом частоты и уменьшением длины волны. Дисперсию мы нередко наблюдаем в природе. Самым красивым ее проявлением является радуга, которая образуется благодаря рассеиванию солнечных лучей при прохождении их через многочисленные капли дождя.
Дифракционная решетка. Определение и основные сведения о дифракционной решетке
ОПРЕДЕЛЕНИЕ
Дифракционной решеткой называют спектральный прибор, который является системой некоторого количества щелей, разделенных непрозрачными промежутками.
Очень часто на практике используют одномерную дифракционную решетку, состоящую из параллельных щелей одинаковой ширины, находящихся в одной плоскости, которые разделяют равными по ширине непрозрачными промежутками. Такую решетку изготавливают при помощи специальной делительной машины, которая наносит на пластине из стекла параллельные штрихи. Количество таких штрихов может быть более чем тысяча на один миллиметр.
Лучшими считаются отражательные дифракционные решетки. Это совокупность участков, которые отражают свет с участками, которые свет отражают. Такие решетки представляют собой отшлифованную металлическую пластину, на которой рассеивающие свет штрихи нанесены резцом.
Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.
Допустим, что на дифракционной решетке ширина щели будет a, ширина непрозрачного участка — b, тогда величина:
называется периодом (постоянной) дифракционной решетки.
ссылки
- Берк, Джон Роберт (1999). Физика: природа вещей. Мехико: международные редакторы Thomson.
- «Христиан Гюйгенс». Энциклопедия мировой биографии. 2004. Encyclopedia.com. (14 декабря 2012 г.).
- Типлер, Пол Аллен (1994). Физика. 3-е издание. Барселона: Реверте.
- Исправлен принцип распространения волн Дэвида А. Б. Миллера Гайгенса, Optics Letters 16, pp. 1370-2 (1991)
- Принцип Гюйгенса-Френеля (н.д.). В википедии. Получено 1 апреля 2018 г. с сайта en.wikipedia.org.
- Свет (н.д.) В википедии. Получено 1 апреля 2018 г. с сайта en.wikipedia.org.
-
Эксперимент Юнга (н.д.). В википедии. Получено 1 апреля 2018 г. с сайта es.wikipedia.org.
Принципы волновой теории света Гюйгенса
В 1678 году Кристиан Гюйгенс сформулировал свою волновую теорию света, которую позже, в 1690 году, опубликовал в своей работе «Трактат о свете»..
Голландский физик предположил, что свет излучается во всех направлениях как набор волн, движущихся через среду, которую он назвал эфиром. Поскольку гравитация не влияет на волны, предполагалось, что скорость волн уменьшалась, когда они входили в более плотную среду.
Его модель оказалась особенно полезной при объяснении закона отражения и преломления Снелла-Декарта. Он также удовлетворительно объяснил явление дифракции.
Его теория основывалась в основном на двух понятиях:
а) Источники света излучают волны сферической формы, похожие на волны, возникающие на поверхности воды. Таким образом, световые лучи определяются линиями, направление которых перпендикулярно поверхности волны..
б) Каждая точка волны, в свою очередь, является новым центром излучателя вторичных волн, которые излучаются с той же частотой и скоростью, что и первичные волны. Бесконечность вторичных волн не воспринимается, так что волна, возникающая от этих вторичных волн, является ее оболочкой.
Однако волновая теория Гюйгенса не была принята учеными его времени, за исключением нескольких исключений, таких как Роберт Гук..
Огромный престиж Ньютона и огромный успех, который достиг его механики, а также проблемы, связанные с пониманием концепции эфира, сделали большинство современных ученых тем, кто предпочел корпускулярную теорию английского физика..
отражение
Отражение — это оптическое явление, которое имеет место, когда волна падает косо на поверхность разделения между двумя средами и претерпевает изменение направления, возвращаясь в первую среду вместе с частью энергии движения..
Законы отражения следующие:
Второй закон
Значение угла падения точно такое же, как у угла отражения.
Принцип Гюйгенса позволяет продемонстрировать законы отражения. Проверено, что когда волна достигает разделения сред, каждая точка становится новым источником излучения, излучающим вторичные волны. Фронт отраженной волны является оболочкой вторичных волн. Угол этого отраженного фронта вторичной волны в точности совпадает с углом падения.
преломление
Однако рефракция — это явление, которое возникает, когда волна падает косо в промежутке между двумя средами, которые имеют различный показатель преломления..
Когда это происходит, волна проникает и передается второй средой вместе с частью энергии движения. Преломление происходит как следствие различной скорости распространения волн в разных средах..
Принцип Гюйгенса дал убедительное объяснение рефракции. Точки на волновом фронте, расположенные на границе между двумя средами, действуют как новые источники распространения света, и, следовательно, направление распространения изменяется..
дифракция
Дифракция — это физическое явление, характерное для волн (оно встречается во всех типах волн), которое состоит из отклонения волн, когда они находят препятствие на своем пути или проходят через щель.
Следует иметь в виду, что дифракция возникает только тогда, когда волна искажается из-за препятствия, размеры которого сопоставимы с его длиной волны..
Теория Гюйгенса объясняет, что когда свет падает на щель, все точки его плоскости становятся вторичными источниками излучающих волн, как это уже объяснялось ранее, новых волн, которые в этом случае получают название дифрагированных волн..
Оставшиеся без ответа вопросы теории Гюйгенса
Принцип Гюйгенса оставил ряд вопросов без ответа. Его утверждение о том, что каждая точка волнового фронта, в свою очередь, является источником новой волны, не объясняет, почему свет распространяется как назад, так и вперед..
Точно так же объяснение концепции эфира не было полностью удовлетворительным и было одной из причин, почему его теория изначально не была принята..
Метод Френеля
Вторым способом создания интерференционной картины является метод деления амплитуды волны. Его смысл заключается в расщеплении волны света на полупрозрачной пластине на две когерентные волны. Фронт волны сохраняется, изменяется только направление его движения.
Одним из методов получения когерентных источников света в данном случае, может служить устройство, которое называют зеркалами Френеля. В этом устройстве свет от точёного источника S падает на два плоских зеркала $З_1$ и $З_2$, которые расположены под небольшим углом друг к другу ($\alpha $). При отражении свет образует два мнимых когерентных источника $S_1$ и $S_2\ (рис.3).$ Плоскость $SS_1S_2$, перпендикулярна к линии пересечения зеркал, $A$ — точка пересечения. Если расстояние $SA=b$, то $S_1A=S_2A=b$. Перпендикуляр к середине отрезка $S_1S_2$ проходит через точку $А$. Расстояние между $S_1$ и $S_2$ равно:
Угол $\varphi $, под которым из точки O видно расстояние $S_1S_2$, будет равен:
В таком случае $\triangle x$ равно:
Угол $\varphi $ можно измерить по шкале зрительной трубы. Для этого трубу размещают в точке $О$ и устанавливают ее так, чтобы отчетливо видеть изображения $S_1\ и\ S_2,\ S.\ $В таком случае легко найти длину волны $\lambda $, используя выражение:
Ширина области перекрытия световых пучков равна $2a\alpha $, значит количество интерференционных полос, которые можно наблюдать ($N$) равно:
В опыте Френеля интерференционная картина искажена дифракцией на ребре, по которому пересекаются зеркала. Полосы интерференции можно наблюдать на белом матовом экране или матовом стекле (на задней стороне).
Задание: В опыте Юнга расстояние между щелями равно $d=0,5 мм$, длина волны света $\lambda $=0,6мкм. Ширина интерференционных полос при этом равна $\triangle x=1,2\ мм.\ $Чему равно расстояние от экрана до щелей ($a$) в данном опыте?
Решение:
В опыте Юнга интерференционные максимумы наблюдаются в точках, описанных выражением:
Ширина первого интерференционного максимума при этом будет равна:
Выразим из (1.2) искомое расстояние, получим:
где для воздуха в обычных условиях $n=1$. Проведем вычисления:
Ответ: $a=1м.$
Задание: В опытах с зеркалами Френеля расстояние между мнимыми источниками света равно $d,$ расстояние от них до экрана $l$. В желтом свете ширина интерференционных полос равна $\triangle x\ .\ $Какова длина волны желтого цвета?
Решение:
Запишем условие получения интерференционных максимумов при сложении двух когерентных волн:
\
Для интерференции света необходимым условием является получение когерентных световых пучков. В процессе его выполнения, свое применение находят различные приемы. До того времени, когда во всех приборах для наблюдения интерференции света появились лазеры, когерентные пучки получали с помощью разделения и последующего сведения световых лучей, испускаемым одним и тем же источником. На практике, это может быть осуществимо при помощи экранов и щелей, зеркал и преломляющих тел. Разберем некоторые из таких методов.