Мейоз

Отличие мейоза от митоза

Мейоз и митоз – кардинально отличающиеся друг от друга процессы. Да, это деление клеток, но принципы и последствия у них различны.

  • Митоз – это наиболее распространенный в живых организмах процесс деления клеток. При этом, образуются генетически полностью идентичные друг другу клетки.
  • Генетический материал равномерно распределяется по новым клеткам, обеспечивая преемственность базовой информации и структуры клеток.
  • Дочерние клетки образовываются из материнской и полностью ее дублируют.
  • С помощью митоза организм растет, залечивает повреждения, развивается, не изменяя своих врожденных характеристик.
  • С помощью митоза происходит бесполое размножение организмов: почкование, вегетативное размножение, фрагментация, спороношение.
  • Соматические клетки также делятся митозным способом, обеспечивая рост и сохранение изначального строения организма.

Основное различие мейоза и митоза – в процессе последнего информация ДНК, присутствующая в материнской клетке, полностью дублируется, без каких-либо изменений.

Вторая стадия

Первая стадия сразу же переходит во второе деление. Только вот гены, которые подвержены этому состоянию, носят в себе гаплоидный набор.

Фазы второй стадии:

Профаза 2 — связана с конденсацией, которая наблюдается в достаточно короткий период. Ядро разделяется на продукты распада, которые отходят к полюсу ядра. В этой же фазе ядерные оболочки разрушаются, начинается создание веретена, которое прямо противоположно 1 веретену.

  • Вторая метафаза обеспечена расположением унивалентных соединений, которые несут в себе по две хроматиды. Они размещаются на равномерном расстоянии от полюса ядра, что связано с появлением метафазной пластинки.
  • Во второй анафазе наблюдается раздвоение центромер. Новоиспеченное соединение, отделившись от другого, перемещается к полюсу.
  • Вторая телофаза завершается присоединением геномов и расчленением на 4 новые дочерние части.

Как результат — один диплоидный материал переходит в 4 гаплоидные. Если процесс мейоза связан с гаметогенезом, то между первым и вторым циклом достаточно неравнозначные скачки. Затем, в процессе редукционного деления мейоза, формируется всего 1 гаплоидная яйцеклетка и 3 редукционные тельца.

Как происходит мейоз клетки, этапы

Мейоз представляет собой последовательность из двух этапов деления:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

  1. Редукционный — это непосредственный этап уменьшения. Именно так переводится с греческого языка его название. Когда этот период заканчивается, в клетке остается ровно в два раза меньше наследственных хромосом.
  2. Эквационный («уравнивающий»). Протекает сходно с митозом.

Оба происходят в половых клетках и связаны с образованием гамет (у животных) или спор (у растений).

Биологическое значение процесса

Сохранение количества хромосом при половом размножении. Человеку свойственен определенный диплоидный набор генов: 23 со стороны матери и столько же от отца. Всего получается 46 хромосом.

Каждый раз в момент образования первой клетки организма — зиготы при оплодотворении этот набор восстанавливается благодаря мейозу. Если бы мейоза не происходило, при каждом следующем размножении гаметы бы удваивались. Будущий организм получал бы каждый раз удвоенный по сравнению с предыдущим хромосомный набор, что вело бы к различным нарушениям в организме: чем дальше это продолжалось, тем их степень была бы серьезнее.

На сегодняшний день выявлено, что естественный процент таких нарушений — 1%. Примером могут служить известные миру хромосомные болезни. Возникают они как раз из-за нарушения количества и состава хромосом.

Пример

Болезнь Шерешевского-Тернера.

Причина возникновения — нарушение половых хромосом.

Основной признак: у таких людей вместо обычных сорока шести — сорок пять хромосом. И женский фенотип. Болезнь характеризуется множеством нарушений: физических (внешних), внутренних органов и скелета. Иногда и ментальных (около 15% случаев).

Первая фаза

Первое деление мейоза характеризует превращение из диплоидного в гаплоидный. Это предшествует появлению первой профазы, которая основана на сохранности наследственной части материала. Первое деление связано с постепенным сближением хромосомных участков, которые содержат одинаковое строение. Такое состояние называется конъюгацией. Благодаря этому происходит образование биваленты, то есть пары. Такие пары содержат в себе две хроматиды с удвоенным наследственным материалом. Именно поэтому можно утверждать, что биваленты представлены 4 нитями. В ходе конъюгирования хромосома подвержена дальнейшей спирализации. В последующем они отдаляются друг от друга, а в месте их сплетений могут наблюдаться разрывы. В результате этого возможно восстановление участков с разрывами и взаимообмен наследственной информацией. Генный материал, который переходит из родительских частей в новый организм, всегда содержит материнские данные. Весь этот цикл, в результате которого наблюдается переплетение гомологического ряда хромосом с хроматидами, называется кроссинговер. После этого видоизмененный материал с новыми генными соединениями отдаляется друг от друга.

В результате раздвоения и такого закономерного кроссинговера возможен взаимообмен между различными по размерам частями материалов, что ведет к рекомбинации наследственной информации гаметы.

Первая профаза

Первая профаза представлена достаточно сложной составляющей и имеет 5 переходящих друг в друга этапов:

  • Первый этап, который называется лептотеной, связан с упаковкой генного материала и появлению структур в виде тонких нитей. В результате этого они теряют свой первозданный размер и сокращаются.
  • Второй этап, который называется зиготеной, связан с конъюгацией генов с получением совершенно новой структуры. Такая структура имеет две соединенные части, которые называются тетрадами.
  • Третий этап, именуемый пахитеной, связан с более плотным соединением, что ведет к появлению хиазм. Именно в этих участках наблюдается взаимообмен гомологичных данных.
  • Четвертый этап, который называется диплотеной, связан с конденсацией. В данном случае некоторые геномы могут работать и поддаваться транскрипции, что связано с появлением РНК. При этом гомологичные данные остаются в соединенном состоянии.
  • Пятый этап, который называется диакинезом, связан с конденсацией цепочки ДНК. В данном случае допустимо прекращение всех синтетических материалов и разрушение оболочки ядра.

Первая анафаза

Характеризуется сокращением микротрубочек, разъединением гомологичных материалов и их расхождением по полюсам. В анафазе полюс приобретает по 1 генному соединению с двумя хроматидами. При этом расхождению участков подвержены только целые структуры, которые несут в себе по 2 хроматиды.

Первая телофаза

В первой телофазе полюс веретена содержит единичные гены, каждые из которых представлены одной хромосомой и 2 хроматидами. Это достаточно короткая фаза, в которой наблюдается возобновление оболочки ядра и материнские части разделяются на 2 дочерних. Можно сказать, что первая профаза создана для дальнейшей редукции геномного материала. При этом в гамете оказывается гаплоидный материал, который возможен за счет расхождения биваленты.

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

Нужна помощь

Мейоз клетки. Преимущества

Мейоз клетки играет важнейшую роль для всех организмов. Среди основных преимуществ можно выделить следующие:

  • Организмы, которые способны размножаться половым путем, не подвержены удвоению генного материала среди поколений. Это связано с редукцией хромосом и образованием половой принадлежности.
  • Возможность создания совершенно новых генов, что связано с генетическим различием гамет.
  • За счет редукции возможно образование совершенно здоровых гамет, которые несут лишь одну аллель.
  • Случайное образование пластин веретена первой метафазы и хромосом во второй. Дальнейшее отдаление материала связано с образованием новой комбинации аллеи в гамете. Такое независимое отдаление связей основано на третьем законе Менделя.

Первый этап

В мейоз вступают определённые соматические клетки после интерфазы. У каждой из них диплоидный набор хромосом. Присутствуют гомологичные пары хромосом, которые несут одинаковые гены, но в разных вариациях, например, кодирующие группы крови А и В. Каждая из гомологичных хромосом состоит из 2 хроматид, в которых гены представлены в одинаковых вариациях.

Профаза I

Первый этап самый сложный, поскольку отвечает за перераспределение генетического материала. У человека его продолжительность составляет 22,5 суток. В этой фазе происходит кроссинговер – спаренные хромосомы обмениваются короткими последовательностями ДНК, гомологичными участками. Эта фаза состоит из 5 этапов:

  1. Лептотена. Хромосомы укорачиваются, спирализируются и конденсируются, становятся видимыми в световой микроскоп. В ядре они расположены беспорядочно.
  2. Зиготена. Гомологичные хромосомы скрепляются друг с другом с помощью белковых субъединиц – происходит конъюгация. Такие структуры, состоящие из 4 хроматид, называются тетрадами или бивалентами.
  3. Пахитена. Гомологичные хромосомы тесно связываются друг с другом, в некоторых местах происходит сближение, перекрещивание (образуются хиазмы) и обмен небольшими параллельными участками.
  4. Диплотена. Генетический материал частично деконденсируется, раскручивается и используется – происходит синтез РНК и белка. Такие деконденсированные биваленты получили название хромосом типа ламповых щеток.
  5. Диакинез. Хромосомы снова конденсируются. Клетка готовится к делению: растворяется ядерная оболочка, центриоли передислоцируются к разным полюсам клетки.

Метафаза I

В профазе к делению готовится генетический материал, в метафазе – другие клеточные структуры. Ядро лишено оболочки, биваленты располагаются по экватору клетки, образуя метафазную пластинку. К каждой хромосоме прикреплено веретено деления.

https://youtube.com/watch?v=bpgiI1Up0qM

Анафаза I

При участии веретена деления к полюсам клетки подтягивается по одной хромосоме из каждой тетрады. В клетке сформированы два гаплоидных генома – у каждого из двух полюсов. Но клетку продолжают считать диплоидной до разделения цитоплазмы.

Телофаза I

Цитоплазма клетки делится на 2 части. У растений — путём достраивания поперечной клеточной стенки, у животных цитоплазматическая мембрана инвагинируется и перешнуровывается. Формируются ядра. Образуется 2 клетки с неудвоенным набором хромосом, состоящих из 2 хроматид. Эти клетки имеют только по одной вариации каждого гена.

Биологическое значение мейоза

Процесс деления клеток-эукариотов способом мейоза играет большую роль, особенно в образовании клеток половой системы – гамет. В процессе оплодотворения, когда гаметы сливаются, новый организм получает диплоидный набор хромосом и тем самым сохраняются признаки кариотипа. Если бы не было мейоза, то в результате размножения число хромосом постоянно бы росло.

Рис. 3. Схема образования гамет

Помимо этого биологическим смыслом мейоза является:

ТОП-4 статьи

которые читают вместе с этой

  • образование спор у растений и грибов;
  • комбинативная изменчивость организмов, так как при конъюгации получаются новые наборы генетической информации;
  • основополагающий этап при образовании гамет;
  • передача генетического кода новому поколению;
  • поддержание постоянного числа хромосом при размножении и последующем оплодотворении;
  • дочерние клетки не похожи на материнские и сестринские.

Что мы узнали?

Мейозом называют процесс, сущность которого состоит в уменьшении числа хромосом при делении клетки. Проходит он в два этапа, каждый из которых состоит из четырёх фаз. В результате первого этапа получаем две клетки с гаплоидным набором хромосом. Второй этап проходит по принципу деления способом митоза, в результате чего получаем четыре клетки с гаплоидным набором. Данный процесс очень важен в образовании половых клеток, которые участвуют в оплодотворении. Полученные клетки – гаметы с гаплоидным набором при слиянии образуют зиготу с диплоидным набором, тем самым поддерживается постоянное число хромосом. Особенность мейоза состоит в том, что дочерние клетки не похожи на материнскую клетку, и имеют генетический материал, который отличается от родительской клетки.

  1. /10

    Вопрос 1 из 10

Стадии мейоза

Процесс возникновения репродукционных клеток происходит на протяжении двух стадий:

  • профаза мейоза 1;
  • профаза мейоза 2.

Клетка, прежде чем вступить в решающую стадию, проходит подготовительный период, называемый интерфазой. Данный короткий период в свою очередь делится на три стадии:

  • G1 происходит перед удвоением хромосом ДНК. Клетка значительно увеличивается в размерах, готовясь к делению;
  • S характеризуется синтезом ДНК-цепочки и происходит для большинства организмов стремительно;
  • G2 является коротким периодом после разделения цепочки, но до начала деления клетки. Клетка увеличивает содержание белков в своей структуре и растет. У нее все еще сохраняются нуклеолы, а ядро остается под защитой мембраны. Клеточные хромосомы удваиваются, но продолжают иметь вид хроматина.

Окончание интерфазы знаменуется началом клеточного деления.

Особенности мейоза

Процесс мейоза происходит исключительно в половых клетках и завязан на репродуктивные функции. Обычно в его ходе получаются четыре дочерних клетки. Однако, если деление происходит в организме женской особи, то образуется одна-единственная яйцеклетка, имеющая крупные размеры и обладающая большим запасом питательных веществ. Он проходит в два этапа:

  • редукционный, когда набор хромосом удваивается и созданные новые клетки получают половинчатый набор;
  • эквационный, в ходе которого получившиеся клетки снова разделяются без предварительного удвоения ДНК. Он сходен с первым этапом, но имеет свои отличительные особенности. В его ходе к полюсам расходятся получившиеся на первом этапе сестринские хромосомы-тетрады.

Происходит мейоз только в соматических клетках, не участвующих в процессе размножения, которые имеют двойной, диплоидный, набор хромосом. Либо – в полиплоидных четных клетках. Этот вид мейоза присущ растениям и представляет собой наследственные изменения клеток, при котором основной набор числа хромосом кратно удваивается. Обычно такие растения крупнее, легче приспосабливаются к изменениям окружающей среды, более выносливы и меньше болеют.

Сравнение двух типов деления

После митотического деления происходит формирование соматических клеток. Без него многие жизненно необходимые процессы, например, регенерация, развитие, бесполое размножение или рост, не представляются возможными. А характерной чертой мейоза является образование гамет, без которых невозможно половое размножение. Несмотря на то что эти процессы лежат в основе создания разных клеток, они имеют общие черты.

Во время интерфазы обоих процессов ДНК удваивается, к тому же этапы одинаковые. Однако в результате нескольких делений мейоза, первое из которых сопровождается конъюгацией, получается четыре половые клетки с набором хромосом 1n1c, а после деления митоза, не сопровождающегося конъюгацией, образуются только две клетки, содержащие диплоидный, 2n2c.

Мейоз

Основные события мейоза
Продолжительность мейоза
Премейотическая интерфаза
Профаза I
Лептотена
Зиготена
Пахитена
Диплотена
Диакинез
Метафаза I
Анафаза
Телофаза
Интеркинез
Второе деление мейоза
Гаметогенез

Основные события мейоза
Мейоз – тип митоза, или редукционное деление, при котором из одной клетки образуется четыре, каждая из которых имеет вдвое меньше хромосом чем исходная; т.е. число хромосом уменьшается с диплоидного (2n) до гаплоидного (n). Мейоз происходит при образовании гамет — гаметный, при образовании спор — споровый и мейоз может быть зиготным. Смысл гаметного мейоза сводится к образованию половых клеток, при слиянии которых, восстанавливается число хромосом (до диплоидного) характерное для соматических клеток данного вида. Споровый тип мейоза происходит у растений для которых характерно чередование поколений — гаплоидного, размножающегося бесполым путем и диплоидного, размножающегося половым путем (см. обзор Размножение).

рис.1 Принципиальная схема мейоза. В соматических диплоидных клетках содержат две гомологичные хромосомы, одна отцовская и одна материнская. Они удваиваются в S-фазе клеточного цикла, образуя две пары сестринских хроматид. Хромосомы сближаются и между ними происходит кроссинговер — обмен участками между материнской и отцовской парами хроматид с образованием хроматид содержащих отцовские и материнские гены. Хромосомы конденсируются, выстраиваются и расходятся. Затем происходит второе деление мейоза.Стадии мейоза 2n—>S—>4n—>2x2n—>4x1n
Мультипликация, демонстрирующая основные события мейоза: meiosis.mpg

Мейоз разделяют на ряд стадий, которые можно различить в световой микроскоп.
Первое деление мейоза
Профаза I мейоза разделяетя на ряд стадий.
лептотена (стадия тонких нитей) начинается спирализация х-м
зиготена (стадия сливающихся нитей),сближение и начало конъюгации гомологичных х-м, кот объединяются в бивалент
пахитена (стадия толстых нитей) м-у гомологичными х-мами осуществляется кроссинговер
диплотена (стадия двойных нитей) отталкивание гомологичных х-м, кот отделяются др от др в области центромер, но остаются связанными в областях прошедшего кроссинговера – хиазмах
диакинез (стадия обособления двойных нитей) гомологичные х-мы удерживаются в месте лишь в отдельных точках хиазм – уменьшение числа хиазм, компактность бивалентов
Метафаза I — завершается формирование веретена деления, его нити прикрепляются к центромерам хромосом, в результате чего биваленты устанавливаются в плоскости экватора веретена деления, образуя экваториальную пластинку.
Анафаза I — связи в бивалентах ослабляются и гомологичные хромосомы отходят друг от друга, направляясь к противоположным полюсам веретена деления. К каждому полюсу подходит гаплоидный набор хромосом, состоящий из двух хроматид.
Телофаза I — у полюсов веретена деления собирается одинарный гаплоидный набор хромосом, каждая из них содержит удвоенное количество ДНК (n2c).
Интеркинез — временной промежуток между первым и вторым делениями мейоза. Не всегда обязателен.
Второе мейотическое отделение (эквационное) протекает как митоз, только клетки, вступающие в него, несут гаплоидный набор хромосом.

ПРОДОЛЖИТЕЛЬНОСТЬ МЕЙОЗА
Продолжительность мейоза напрямую зависит от количества ДНК в ядре. Также продолжительность мейоза зависит от структуры хромосомной организации и особенностей данного вида.

Вид 2n Время, ч ДНК на клетку (пг)
Antirrhinum majus 16 24.0 5.5
Haploppapus gracilis 4 36.0 5.5
Secale cereale 14 51.2 28.7
Allium cepa 16 96.0 54.0
Tradescantia paludosa 12 126.0 59.0
Tulbaghia violacea 12 130.0 58.5
Lilium henryi 24 170.0 100.0
Lilium longiflorum 24 192.0 106.0
Trillium erectum 10 274.0 120.0

ПРЕМЕЙОТИЧЕСКАЯ ИНТЕРФАЗА

ПРОФАЗА I

Лептотена
(стадия тонких нитей) начинается спирализация х-м

Зиготена
Происходит начало синапсисиса — спаривание гомологичных хромосмом с образованием бивалента, или синаптонемального комплекса, в котором хромосомы выровнены и соединены.
Во время зиготены образуется zDNA составляющая 0,3, 0,4% от всей ДНК. zDNA GC-обогащена и находится в блоках длиной 104 пн разбросанных вдоль хромосом. Добавление ингибиторов синтеза ДНК в зиготене, предотвращают синапсис.

Пахитена
Хромосомы конденсируются
Синаптонемальный комплекс
Мейоз проходит и в отсутствии синаптонемального комплекса, но без рекомбинации.

Диплотена

Диакинез

МЕТАФАЗА I

АНАФАЗА I

ТЕЛОФАЗА I

ИНТЕРКИНЕЗ

ПРОФАЗА II
МЕТАФАЗА II
АНАФАЗА II
ТЕЛОФАЗА II

ГАМЕТОГЕНЕЗ

СИНАПСИС

КРОССИНГОВЕР

Alberts, 2003

Alberts, 2003

Alberts,2003

Профаза мейоза 1

Является наиболее длительной и сложной для организма, и проходит намного дольше, чем при обычном митозе. Ведь сблизившимся половинчатым хромосомам необходимо обменяться участками ДНК.

  • Конъюгация – процедура сцепки гомологичных хромосом, имеющих в своем составе лишь 1/2 от базового количества.
  • Кроссинговер – процесс обмена схожими участками в составе половинчатых хромосом. Причем в процессе могут участвовать также несестринские хроматиды, имеющие идентичные участки. В узлах обмена формируются хиазмы.

Подготовленная клетка, набравшая размеры и питательные вещества, начинает свое деление.

  • Хромосомы уплотняются и притягиваются к мембране ядра.
  • Далее идет процесс синапсиса – сближения половинчатых хромосом и соединение их в тетрады (биваленты), которые сохраняются до начала анафазы 1. Их сцепление обеспечивается центромерами между сестринскими и хиазмами между несестринскими хроматидами.
  • Соединение различных наборов хромосом способствует возникновению новых, уникальных генетических образований.
  • Хромосомы продолжают объединение и отлепляются от оболочки ядра.
  • Центриоли начинают взаимную миграцию на противоположные полюса клетки, а защитные оболочки ядра и ядрышек разрушаются.
  • Хромосомы медленно подплывают к экваториальной плоскости клетки, выстраиваясь в четко ориентированную горизонтальную линию.

В профазе хромосомы в обязательном порядке закручиваются характерными спиралями, приобретая знакомую нам форму ДНК и ее размеры. Затем наступает период метафазы 1.

Редукционный этап или первое деление мейоза

Его суть — изменение числа хромосом внутри клетки. То есть из одной диплоидной (2n4c) клетки получаем две гаплоидных (1n2c). Так стоп, откуда 4c? До этого же было 2n2c. Ах да… Сейчас разберемся. 

Интерфаза

Перед вступлением в мейоз клетка проходит через интерфазу. Ей нужно подготовиться к делению — запасти энергетических субстратов (АТФ), синтезировать необходимые белки и удвоить количество молекул ДНК. Еще в интерфазу происходит удваивание центромер.


Рисунок. Хромосомный набор в интерфазу

В интерфазу произошла репликация ДНК — образовалась идентичная цепь. Но эти две цепи, или хроматиды, связаны между собой при помощи центромеры, значит количество хромосом такое же. Итого набор — 2n4c 

Ну вы ведь понимаете, что таким образом реплицируются все 46 хромосом. Просто удобнее показать на паре. Помните, что все 23 пар вступают в мейоз, а не только одна.  После репликации начинается собственно мейоз, а именно его первая фаза: 

Профаза мейоза I

В отличие от митоза состоит из пяти стадий: лептотена, зиготена, пахитена диплотена и диакинез. Она более длительная и здесь протекают важные процессы: конъюгация и кроссинговер. Еще в эту фазу растворяется ядерная оболочка и формируется веретено деления, подробнее об этом ниже.

Лептотена

Какая основная задача у клетки? Правильно, передать генетический материал своим потомкам. Поэтому она начинает упаковывать молекулы ДНК как можно плотнее, она собирает чемодан, ведь не хочет ничего не потерять в пути. Этот процесс называется спирализация или конденсация хромосомы. Клетка так старается, что невидимые раньше в микроскоп хромосомы становятся видимыми. Они похожи на длинные и тонкие нити.  

Зиготена

Здесь происходит конъюгация хромосом — их сближение с образованием бивалентов. Связь обеспечивает синаптонемальный комплекс — он удерживает гомологичные хромосомы рядом это необходимо для запуска кроссинговера на следующем этапе.


Схема. Образование бивалентов.

Связи между хромосомами могут иметь разный вид, но они должны быть. Если в клетке останутся хромосомы, которые не сблизились, то она запускает апотоз и погибает. Клетка — с заботой о будущих поколениях!  

Пахитена

Начинается с еще большей конденсации хромосом, они становятся короче и толще. Но в местах образования синаптонемальных комплексов происходит частичное раскручивание (деконденсация) хромосом.  

Все это для начала кроссинговера — обмена участками ДНК у гомологичных хромосом. Обмен обеспечивает перекомбинацию генетического материала. Если бы мы могли рассоединить хромосомы сразу после кроссинговера, то увидели примерно такую картину: 


Схема. Кроссинговер.

Это лишь схематичное изображение, перекресты могут происходить в самых разных местах , что дает огромную генетическую вариабельность.  

В конце пахитены мостики между хромосомами разрушаются, они начинают отдаляться друг от друга. 

Диплотена

Хромосомы расходятся в области центромер, но остаются связаны между собой в местах кроссинговера — перекрестах или хиазмах. В микроскоп можно увидеть все четыре хроматиды, так сильно они упаковались (спирализовались).

Диакинез

Гомологичные хромосомы расходятся, формируется веретено деления и исчезает ядерная оболочка. Этим завершается профаза мейоза I. Вид клетки примерно такой: 


Схема. Конец профазы мейоза I

Метафаза мейоза I

В этой фазе заканчивается образование веретена деления. Нити веретена прикрепляются к центромерам и начинают притягивать хромосомы, из-за этого они располагаются на экваторе клетки. 


Схема. Клетка в метафазу I

Анафаза мейоза I

Нити веретена деления продолжают тянуть хромосомы на себя — они расходятся к полюсам клетки. На полюсах клетки располагается по 23 хромосомы, но они все еще состоят из двух нитей ДНК.  


Схема. Анафаза мейоза I

Телофаза мейоза I

Завершение редукционного деления. Появляется ядерная оболочка, которая окружает хромосомы. Затем возле ядер появляется перетяжка, которая делит клетку на две части. Образуются две гаплоидные клетки.  


Схема. Конец первого деления мейоза

§ 18. Мейоз

Место мейоза и оплодотворения в жизненном цикле организмов. Большинству видов эукариотических организмов свойственно половое размножение. При этом в жизненном цикле происходит чередование гаплоидных (1n) и диплоидных (2n) стадий развития — смена ядерных фаз. *Уровень развития и продолжительность существования каждой фазы у разных групп организмов различается. Например, у некоторых водорослей практически весь цикл развития протекает в гаплоидном состоянии, диплоидной является лишь стадия зиготы. У животных, напротив, гаплоидная фаза жизненного цикла представлена только гаметами, а все остальные стадии развития диплоидны.*

Ключевую роль в смене ядерных фаз играют такие процессы, как мейоз и оплодотворение. Благодаря мейозу осуществляется *редукция хромосомного набора, т. е.* переход из диплоидной фазы в гаплоидную. Восстановление диплоидного набора хромосом происходит в результате оплодотворения. *В зависимости от места мейоза и оплодотворения в жизненных циклах организмов выделяют три основных типа таких циклов. Они существенно различаются длительностью гаплоидной и диплоидной фаз.*

Например, у некоторых водорослей (хламидомонада и др.) и многих грибов все стадии жизненного цикла гаплоидны, за исключением зиготы (рис. 18.1, а). Первое деление диплоидной зиготы, возникшей в результате оплодотворения, осуществляется путем мейоза. Из образовавшихся гаплоидных клеток — спор — развиваются организмы, имеющие набор хромосом 1n. Образование гамет у таких организмов происходит за счет митоза. Далее гаметы попарно сливаются, в зиготе восстанавливается диплоидный набор хромосом, и цикл замыкается. *В таком цикле развития мейоз происходит фактически сразу же после образования зиготы, поэтому он называется циклом с зиготической редукцией набора хромосом.*

Для животных, как уже отмечалось, характерен жизненный цикл, в котором все стадии развития диплоидны, и лишь половые клетки имеют гаплоидный набор хромосом (рис. 18.1, б). Мейоз у животных непосредственно предшествует образованию гамет *(гаметическая редукция хромосомного набора)*. Гаметы вскоре сливаются, и из зиготы развивается особь с диплоидным набором хромосом.

У растений *и многих водорослей (ульва, ламинария и др.)* в цикле развития закономерно сменяют друг друга два поколения организмов: гаплоидное — гаметофит и диплоидное — спорофит (рис. 18.1, в). Гаметофит — это половое поколение, образующее гаметы путем митоза. После оплодотворения из зиготы, имеющей двойной набор хромосом, развивается диплоидный спорофит — бесполое поколение. Спорофит путем мейоза формирует споры *(спорическая редукция)*, имеющие набор 1n. Из этих спор далее развиваются гаплоидные гаметофиты.

Диплоидный набор хромосом в сравнении с гаплоидным обеспечивает более надежное сохранение наследственной информации. Из курса биологии 10-го класса вы знаете, что организмы, имеющие двойной набор хромосом, способны лучше адаптироваться к меняющимся условиям среды, чем гаплоидные. Поэтому в процессе эволюции, при переходе от примитивных форм жизни к более совершенным, степень развития гаплоидной фазы и ее продолжительность в жизненном цикле организмов уменьшалась, а диплоидной, наоборот, возрастала.

Биологическое значение мейоза

  1. Мейоз дает возможность образовывать гаметы у животных и споры у большинства растений и грибов.
  2. Результатом мейоза является уменьшение количества хромосом вдвое. Благодаря этому, сохраняется постоянство числа хромосом в поколениях. 
  3. Во время мейоза происходит перетасовка генов — кроссинговер. Данная перетасовка — основа комбинативной изменчивости (о которой вы можете почитать в статье «Закономерности изменчивости») и разнообразия живого мира.
Почему в половых клетках только гаплоидный набор хромосом?Только представьте, если бы этот процесс проходил иначе, тогда набор хромосом из поколения в поколение увеличивался бы вдвое. Например, у человека при оплодотворении сперматозоид, имеющий 46 хромосом, сливался бы с яйцеклеткой с таким же набором. Зародыш получил бы 92 хромосомы, а это только первое поколение! С генетической точки зрения это привело бы к накоплению мутаций, фенотипических изменений, но, скорее всего, даже к летальному исходу.  

Значение понятия «мейоз»

Данная форма деления в основном характерна для клеток половой системы, а именно яичников и сперматозоидов. С помощью мейоза из материнской диплоидной клетки образуются четыре гаплоидные гаметы с n набором хромосом.

Состоит процесс из двух стадий:

  • Редукционная, мейоз 1 – состоит из четырёх фаз: профаза, метафаза, анафаза и телофаза. Первое деление мейоза заканчивается образованием из диплоидной клетки двух гаплоидных.
  • Еквационная стадия, мейоз 2, процессуально схожа с митозом. Для этого этапа характерно разделение сестринских хромосом и расхождение их к разным полюсам.

Делению клетки обязательно предшествует стадия интерфазы. На этой стадии в клетке происходят очень важные процессы: Удвоение или репликация ДНК, усиленный синтез белка, многие органоиды также удваиваются, например митохондрии, ЭПС, комплекс Гольджи и другие.

Каждый этап состоит из четырёх последовательных фаз, которые плавно переходят одна в другую. Между двумя стадиями деления интерфаза практически отсутствует, поэтому повторный процесс репликации ДНК не происходит.

Рис. 1. Схема первого деления мейоза.

Особенностью первой стадии деления является профаза 1, которая состоит из отдельных пяти этапов. Объяснение процессов, которые происходят на каждом из них, вы найдёте далее в таблице. В ходе профазы 1 хромосомы укорачиваются за счёт спирализации. Гомологичные хромосомы так плотно соединяются друг с другом, что происходит процесс конъюгации (сближение и слияние участков хромосом). В это время некоторые участки несестринских хромосом могут обменяться друг с другом, такой процесс называется кроссинговером.

Рис. 2. Схема второго мейотического деления.

Понравилась статья? Поделиться с друзьями:
Карта знаний
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: