2.6. Сплавы высокого сопротивления
Помимо высокого сопротивления от таких материалов требуются высокая стабильность ρ во времени, малый ТКρ и малый коэффициент термо-э.д.с. в паре данного сплава с медью. Желательно, чтобы такие сплавы были дешевыми и по возможности не содержали дефицитных компонентов.
2.6.1. Манганин
Это наиболее типичный и широко применяемый для образцовых резисторов сплав. Примерный его состав: Cu- 85%, Mn- 12% и Ni- 3%; название происходит от наличия в нем марганца; желтоватый цвет объясняется большим содержанием меди. ρ манганина 0.42-0.48 мкОм∙м, коэффициент термо-э.д.с. в паре с медью всего 1-2 мкВ/К, αρ весьма мал. Предельная длительно допустимая рабочая температура не более 200°С.
2.6.2. Константан
Сплав, содержащий около 60% меди и 40% никеля; этот состав отвечает минимуму αρ в системе Cu-Ni при довольно высоком значении ρ. Название константан объясняется значительным постоянством ρ при изменении температуры. Нагревостойкость константана выше, чем манганина, а механические свойства близки. Существенным отличием последнего является высокая термо-э.д.с. в паре с медью и с железом. Широкому применению константана препятствует большое содержание дорогого и дефицитного никеля.
2.6.3. Сплавы на основе железа
Сплавы системы Fe – Ni – Cr называются нихромами или (при повышенном содержании железа) ферронихромами; сплавы системы Fe – Cr – Al называются фехралями и хромалями. Нихромы весьма технологичны: их можно легко протягивать в тонкую проволоку или ленту, они имеют высокую рабочую температуру. Однако, как и в костантане, в них велико содержание никеля. Нихромы применяются в качестве электронагревательных элементов.
Хромо-алюминиевые сплавы намного дешевле нихромов, однако эти сплавы менее технологичны, более тверды и хрупки. Они в основном используются для электронагревательных устройств большой мощности.
2.2. Электропроводность металлов
Классическая электронная теория металлов представляет проводник в виде системы, состоящей из узлов ионной кристаллической решетки, внутри которой находится электронный газ из свободных электронов. В свободное состояние от каждого атома переходит от одного до двух электронов. К электронному газу применялись представления и законы статистики обычных газов. Рассматривая тепловое и направленное под действием электрического поля движение электронов, получили выражение закона Ома. При столкновениях электронов с узлами кристаллической решетки энергия, накопленная при ускорении электронов в электрическом поле, передается металлической основе проводника, вследствие чего он нагревается. Рассмотрение этого роцесса привело к выводу закона Джоуля-Ленца. Т.о., электронная теория металлов дала возможность теоретически описать и объяснить найденные ранее экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах. Оказалось возможным также объяснить связь между электро- и теплопроводностью металлов.
Однако появились и противоречия некоторых выводов теории с опытными данными. Они состояли в расхождении кривых температурной зависимости удельного сопротивления, в несоответствии теоретически полученных значений теплоемкости металлов опытным данным.
Эти трудности удалось преодолеть, встав на позиции квантовой механики. В отличие от классической электронной теории квантовая механика полагает, что электронный газ в металлах при обычных температурах находится в состоянии вырождения. В этом состоянии энергия электронного газа почти не зависит от температуры, т.е. тепловое движение почти не изменяет энергию электронов. Поэтому теплота не затрачивается на нагрев электронного газа, что и обнаруживается при измерениях теплоемкости металлов. В состояние, аналогичное обычным газам, электронный газ приходит при температурах порядка тысяч Кельвинов. Представляя металл как систему, в которой положительные ионы скрепляются посредством свободно движущихся электронов, легко понять природу всех основных свойств металлов: пластичности, ковкости, хорошей теплопроводности и высокой электропроводности.
2.1. Общие сведения о проводниках
В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях (в состоянии ионизации) и газы.
Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление при нормальной температуре не более 0.05 мкОм·м, и сплавы высокого сопротивления с удельным сопротивлением не менее 0.3 мкОм·м.
Особый интерес представляют обладающие чрезвычайно малым удельным сопротивлением при весьма низких температурах материалы сверхпроводники и криопроводники.
К жидким проводникам относятся расплавленные металлы и электролиты. Для большинства металлов температура плавления высока, только ртуть, имеющая температуру плавления минус 39°С, может быть использована в качестве жидкого металлического проводника при нормальной температуре. Другие металлы являются жидкими проводниками только при повышенных температурах.
Механизм прохождения тока в металлах – как в твердом, так и в жидком состоянии – обусловлен движением свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода. Проводниками второго рода, или электролитами, являются растворы, в частности, водные, кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов в соответствии с законами Фарадея, вследствие чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза. Ионные кристаллы в расплавленном состоянии также являются проводниками второго рода. Пример – соляные закалочные ванны с электронагревом.
Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля превзойдет некоторое критическое значение, обеспечивающее начало ударной и фотоионизации, то газ может стать проводником с электронной и ионной проводимостью. Сильно ионизированный газ при равенстве числа электронов числу положительно заряженных ионов в единице объема представляет собой особую проводящую среду, называемую плазмой.
2.7. Тугоплавкие металлы
К тугоплавким относятся металлы с температурой плавления, превышающей 1700°С. Как правило, они химически устойчивы при низких температурах, но становятся активными при повышенных. Эксплуатация их при высоких температурах может быть обеспечена в атмосфере инертных газов или в вакууме. В плотном виде чаще всего эти металлы получают методами порошковой металлургии – прессовкой и спеканием. В электронной технике начинают распространяться плавка электронным или лазерным лучом, зонная очистка, плазменная обработка и т.д. Механическая обработка этих материалов трудна и часто требует подогрева.
2.7.1. Вольфрам
Чрезвычайно тяжелый, твердый металл серого цвета. Из всех металлов вольфрам обладает наиболее высокой температурой плавления (3380°С). Его извлекают из руд различного состава, наиболее известными среди которых являются вольфрамит (FeWO4 + MnWO4) и шеелит (CaWO4) путем сложной химической обработки. Для вольфрама характерна слабая механическая связанность кристаллов, поэтому при зернистом строении сравнительно толстые вольфрамовые изделия весьма хрупки и легко ломаются. В результате механической обработки ковкой и волочением вольфрам приобретает волокнистую структуру и излом его весьма затруднен. Этим объясняется гибкость тонких вольфрамовых нитей.
Из вольфрама изготавливают нити ламп накаливания, а также электроды, подогреватели, пружины и крючки в электронных лампах, рентгеновских трубках и т.п. Вследствие тугоплавкости и большой механической прочности, вольфрам может работать при высоких температурах (более 2000°С), но лишь в глубоком вакууме или в атмосфере инертного газа, т.к. при нагревании до температуры в несколько сот градусов в присутствии кислорода он сильно окисляется.
2.7.2. Молибден
Этот металл по внешнему виду, а также по технологии обработки близкий к вольфраму. Важнейшей промышленной рудой молибдена является молибденит MoS2. Молибден применяют в электровакуумной технике при менее высоких температурах, чем вольфрам; накаливаемые детали из молибдена должны работать в вакууме или восстановительной атмосфере.
2.7.3. Тантал
Его получают из мало распространенной руды – танталита Fe(TaO3)2 методами порошковой металлургии, подобно вольфраму и молибдену. Основное отличие его заключается лишь в том, что процесс спекания его осуществляют в вакуумных печах, т.к. тантал склонен к поглощению газов, в результате чего он становится хрупким. Тантал характеризуется высокой пластичностью даже при комнатной температуре. Тантал относят к сверхпроводникам, применяют при изготовлении анодов и сеток генераторных ламп и др.
2.7.4. Титан
Относительно легкий металл, применяющийся в электровакуумной технике благодаря своим хорошим механическим свойствам. Основными минералами, содержащими титан, являются рутил и ильмений. Получают титан методами порошковой металлургии. Его используют не только в качестве конструкционного материала, но и для порошкообразных покрытий молибденовых и вольфрамовых анодов и сеток генераторных ламп. Из него также получают резисторы интегральных микросхем.
2.7.5. Рений
Один из редких очень тяжелых металлов, с температурой плавления, близкой к вольфраму. Рений отличается редким сочетанием свойств, удовлетворяющих большинству требований электровакуумной техники. В атмосфере водорода и во влажной среде он испаряется в меньшей степени, чем вольфрам. Ценной особенностью рения является его меньшая, по сравнению с вольфрамом, степень взаимодействия при высоких температурах с окисью алюминия, из которой изготовляют изоляционные трубки подогревных катодов прямого накала и сеток некоторых типов ламп.
Проводниковые материалы
Основным показателем, характеризующим проводниковые материалы, является электропроводность. В практических условиях удобнее оценивать проводниковые материалы по величине их электрического сопротивления.
На проводимость металла неблагоприятно влияют примеси: чем содержание их больше, тем меньше проводимость металла. Такие примеси, как марганец и алюминий, сильно снижают проводимость меди, а серебро, золото и цинк — в значительной степени. На удельную проводимость оказывает влияние пластическая деформация в холодном состоянии (наклеп). С увеличением степени деформации проводимость металла несколько снижается. При устранении наклепа рекристаллизационным отжигом проводимость восстанавливается.
В связи с этим отличают мягкие (отожженные) проводниковые металлы (в марках материалов обозначаются буквой М) и твердые (неотожженные), обозначаемые буквой Т. Наибольшей проводимостью обладают чистые металлы. Они составляют группу металлов высокой проводимости. Другую группу проводниковых материалов составляют сплавы высокого электрического сопротивления.
Проводниковые металлы с малым удельным сопротивлением
. К металлам, имеющим малое удельное сопротивление относятся: медь, алюминий, железо, серебро, вольфрам, никель и некоторые другие.
Медь
является основным проводниковым материалом. Она, кроме малого удельного сопротивления, имеет достаточно высокую механическую прочность, которая зависит от степени наклепа, высокую пластичность, позволяющую получать прокаткой тонкие листы и ленту, а протяжкой — тонкую проволоку диаметром до 0,01 мм, удовлетворительную стойкость против коррозии, относительную легкость пайки и сварки.
В качестве проводникового материала используют медь марок M1 и М0, содержащие соответственно примесей до 0,1% и до 0,05%.
Твердую (наклепанную) медь применяют для проводов контактной сети, для шин распределительных устройств, для пластин коллекторов электрических машин и пр.
Мягкую (отожженную) медь в виде проволоки круглого и прямоугольного сечения применяют в качестве токопроводящих жил кабелей и обмоточных проводов.
Сплавы меди (бронзы) имеют более высокие механические свойства, чем медь. Их используют для изготовления контактных проводов, коллекторных пластин и других токопроводящих деталей, например пружин. В качестве проводникового материала других сплавов применяют кадмиевую, кадмиево-оловянистую и бериллиевую бронзы.
1.3. Материалы высокого сопротивления
Для различных электронагревательных и электроизмерительных приборов, реостатов (пусковых, нагрузочных и пр.), где требуется высокое сопротивление, употребляются специальные сплавы. В зависимости от применения к ним предъявляются специфические требования. Например, от материалов, используемых в измерительных приборах, требуется: высокое удельное электрическое сопротивление (от этого зависят размер и масса приборов), малый температурный коэффициент удельного сопротивления (для обеспечения стабильности электрического сопротивления прибора), достаточная стабильность удельного сопротивления во времени, малая удельная термо-ЭДС в паре с медью (иначе растет ошибка измерений), хорошая обрабатываемость. К этим материалам относится, например, сплав на основе меди с марганцем — манганин, марок МНМцЗ-12 и МНМцАЖЗ-12-0,3. Их удельное сопротивление в отрезке температур от -100 до+100°С меняется крайне мало. Массовое применение в электротехнике получил также сплав медно-никелевый — константан, марки МНМц40-1,5, его удельное сопротивление практически не зависит от температуры. Для контактных пружин, реостатов и т.п. широко используют другой медно-никелевый сплав — нейзильбер. Иные требования предъявляются к материалам для электронагревательных приборов. Они длительно работают при температурах около 1000°С в воздушной среде. Поэтому от них, кроме высокого сопротивления, требуется также повышенная жаростойкость (т.е. способность работать, не разрушаясь при высоких температурах в воздухе или других газообразных средах). В настоящее время для этих целей широко применяют хромоникелевые и хромоалюминиевые сплавы. Первые из них отличаются большей жаропрочностью, но они дорогие, вторые — намного дешевле, но более тверды и хрупки.
Сопротивление проводника
Удельное сопротивление
И вот мы плавно переходим к другому вопросу, что такое сопротивление проводника? Как я уже говорил выше, чем больше свободных электронов в веществе, тем лучше такое вещество проводит электрический ток. Следовательно, сопротивление проводника зависит от того, сколько свободных электронов содержит такой проводник. Поэтому, в физике есть такое понятие, как удельное сопротивление вещества.
Еще раз. Если в каком-либо веществе полно свободных электронов, то такое вещество будет хорошо проводить электрический ток. Если электронов еще меньше, то такое вещество будет плохо проводить электрический ток. А если свободных электронов почти нет, то такое вещество совсем не будет проводить ток. Поэтому, удельное сопротивление вещества показывает способность этого вещества препятствовать электрическому току, проходящему через него.
Удельное сопротивление выражается в единицах Ом × м.
Формула удельного сопротивления проводника
ρ – это удельное сопротивление, Ом × м
R – сопротивление проводника, Ом
S – площадь поперечного сечения, м2
l – длина проводника, м
Площадь поперечного сечения проводника – это что-то типа этого:
площадь поперечного сечения проводника
Формула сопротивления проводника
Итак, мы теперь знаем такую физическую величину, как удельное сопротивление. Теперь мы с легкостью можем найти сопротивление проводника.
ρ – это удельное сопротивление, Ом × м
R – сопротивление проводника, Ом
S – площадь поперечного сечения, м2
l – длина проводника, м
2.5. Сверхпроводники и криопроводники
Как уже отмечалось, при понижении температуры удельное сопротивление металлов падает. Представляет особый интерес вопрос об электропроводности металлов при весьма низких температурах, приближающихся к абсолютному нулю. Исчезновение электрического сопротивления, т.е. появление практически бесконечной электрической проводимости материала, называется сверхпроводимостью, а температура, при охлаждении до которой совершается переход вещества в сверхпроводящее состояние – температурой сверхпроводникового перехода Тс. Переход в сверхпроводящее состояние является обратимым: при повышении температуры до Тс сверхпроводимость разрушается и материал переходит в нормальное состояние, приобретая конечное значение удельной проводимости γ. В настоящее время известно 27 простых (чистых металлов) и более тысячи сложных (сплавов и химических соединений).
В то же время некоторые вещества, в том числе такие наилучшие проводниковые материалы, как серебро и медь, при наиболее низких, достигнутых в настоящее время температурах (порядка тысячных долей Кельвина; согласно третьему закону термодинамики, абсолютный нуль температуры принципиально недостижим) перевести в сверхпроводящее состояние не удалось. Интересно отметить, что сверхпроводниками могут быть не только соединения и сплавы металлов, обладающих сверхпроводимостью, но и соединения таких элементов с несверхпроводящими и даже соединения, в состав молекул которых входят исключительно атомы элементов, не являющихся сверхпроводящими.
Помимо сверхпроводящих электромагнитов можно отметить возможности использования сверхпроводников для создания электрических машин, трансформаторов и тому подобных устройств малой массы и габаритов, но с высокими к.п.д.; линий электропередачи весьма больших мощностей на дальние расстояния; волноводов с особо малым затуханием; накопителей энергии и пр.
Помимо явления сверхпроводимости в современной электротехнике все шире используется явление криопроводимости, т.е. достижение некоторыми металлами весьма малой удельной проводимости при криогенных температурах (но более высоких, чем температура сверхпроводникового перехода, если данный металл вообще принадлежит к сверхпроводникам. Материалы, обладающие особо благоприятными свойствами для применения в качестве проводников в условиях криогеннных температур, называются криопроводниками или гиперпроводниками.
Весьма малое, но все же конечное значение удельного сопротивления криопроводника при его рабочей температуре ограничивает допустимую плотность тока в нем, хотя эта плотность может быть намного выше, чем в обычных проводниках. Криопроводники, у которых при изменении температуры в широких пределах удельное сопротивление изменяется плавно, без скачков, не могут использоваться в ряде устройств, действие которых основано на триггерном эффекте появления и разрушения сверхпроводимости. Однако применение криопроводников в электрических машинах, аппаратах, кабелях и т.п. имеет и свои преимущества, притом весьма существенные. Так, если в сверхпроводниковых устройствах в качестве охлаждающего агента применяется жидкий гелий, рабочая температура криопроводников достигается применением более высококипящих и дешевых хладоагентов: жидкого водорода или даже жидкого азота. Это значительно упрощает и удешевляет выполнение и эксплуатацию устройства. Кроме того, в сверхпроводниковом устройстве, например электромагните, по обмотке которого проходит сильный ток, накапливается большая энергия магнитного поля. Если из-за случайного повышения температуры или магнитной индукции хотя бы на малом участке сверхпроводящего контура сверхпроводимость будет разрушена, внезапно освободится большое количество энергии, что может вызвать серьезную аварию. В случае же криопроводниковой цепи повышение температуры вызовет лишь постепенное возрастание сопротивления этой цепи без эффекта взрыва.
Во всех случаях для получения криопроводниковых материалов требуется высокая чистота металла и отсутствие наклепа. Вредное влияние примесей и наклепа на ρ металлов при криогенных температурах сказывается намного сильнее, чем при нормальных. Криопроводники могут с успехом использоваться для обмоток электрических машин и трансформаторов, для токопроводящих жил кабелей и т.п.
Удельная проводимость
Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.
Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.
Временное сопротивление разрыву и относительное удлинение при растяжении
При выборе проводов, помимо сечения, материала проводов, изоляции необходимо учитывать их механическую прочность. Особенно это касается проводов воздушных линий электропередач. Провода испытывают растяжение. Под действием силы, приложенной к материалу, последний удлиняется. Если обозначить первоначальную длину l1, а конечную длину l2, то разность l1 – l2 = Δl будет абсолютным удлинением.
называется относительным удлинением.
Сила, производящая разрыв материала, называется разрушающей нагрузкой, а отношение этой нагрузки к площади поперечного сечения материала в момент разрушения называется временным сопротивлением на разрыв и обозначается
Данные временных сопротивлений на разрыв для различных материалов приведены ниже.
Значение предела прочности на разрыв для различных металлов
Наименование металла | Предел прочности на разрыв, кг/мм² |
Алюминий Альдрей Бронза Вольфрам Золото Латунь Медь Молибден Никель Олово Платина Ртуть Сталь Серебро Свинец Цинк Чугун | 8 – 25 30 – 38 31 – 135 100 – 300 – 30 – 70 27 – 44,9 80 – 250 40 – 70 2 – 5 15 – 35 – 70 – 75 15 – 30 0,95 – 2,0 14 – 29 12 – 32 |
Давайте для понимания рассмотрим вот такую картинку. Предположим, что пастух – это ядро, а овцы вокруг него – это электроны.
Те овцы, которые находятся рядом с пастухом, не могут от него просто так взять и убежать, так как он присматривает за ними. Иначе останется без мяса и шерсти к осени. Но вот те овцы, которые находятся поодаль от пастуха, имеют все шансы от него убежать.
То же самое можно сказать и про атомы и электроны. Электроны, которые находятся на самой дальней орбите от ядра менее зависимы, чем те, которые расположены ближе к ядру.
В результате, такие электроны могут “оторваться” от ядра и начать самостоятельное путешествие по веществу. Такие электроны называются свободными электронами.
Чем больше свободных электронов, тем лучше проводимость вещества.
Проводник
— вещество, имеющее свободные носители заряда (заряженные частицы), способные, в отличие от диэлектриков свободно перемещаться внутри этого вещества; их движением обусловлена возможность проводить электрический ток.
Разновидности проводников
. В зависимости от природы и механизма электропроводности их подразделяют на проводники первого и второго рода.
К первым можно отнести вещества с электронной проводимостью, обусловленной движением электронов в цепи от отрицательного полюса положительному. Ко вторым — вещества с ионной проводимостью.
В качестве примера проводников первого рода можно привести все металлы (их сплавы) а также, каменный уголь, графит, сажа и пр. Проводники второго рода — это электролиты (р-ры кислот, щелочи и соли, находящиеся растворенном, расплавленном или кристаллическом состоянии) и т. д.
Основные параметры проводниковых материалов:
Удельная проводимость проводника (σ)
— величина, обратная удельному сопротивлению (р ). Является наиболее важным параметром, характеризующим свойства проводникового материала. Наиболее широко в электротехнике используются чистые металлы и сплавы металлов с низким удельным сопротивлением (р =0,015-0,108 ом*мм2/м).
Температурный коэффициент удельного сопротивления (αρ)
— показатель зависимости сопротивления проводника от его температуры. Так, при увеличении температуры увеличивается и удельное сопротивление большинства проводников.
Теплопроводность
— его способность передавать теплоту. Для количественной оценки данной характеристики существует коэффициент теплопроводности (γт ).
Ввиду того, что передача тепла в веществах осуществляется посредством электронов, коэффициент теплопроводности металлов, имеющих их наибольшее количество будет значительно превышать γт
диэлектриков. Так, с увеличением температуры вещества связано снижение его удельной проводимости и отношениеγт к его удельной проводимости будет увеличиваться.
Контактная разность потенциалов
— разность потенциалов между двумя находящимися в контакте проводниками с одинаковой температурой. Их соединение сопровождается обменом электронами — заряд проводника с большей работой выхода отрицательно, с меньшей — положительно.
Их зарядка будет происходить до уравновешивания потоков движущихся электронов в обоих направлениях и не произойдет уравнивание электрохимического потенциала в системе.
Работа выхода электронов из металла
— энергия, расходуемая на удаление электрона из поверхностного электронного слоя проводника.
Предел прочности при растяжении σρ и относительное удлинение перед разрывом Δl/l
— показатели, характеризующие механические свойства материала.