История открытия[]
В 1839 году Александр Беккерель наблюдал явление фотоэффекта в электролите. В 1873 году Виллоби Смит обнаружил, что селен является фотопроводящим. Затем эффект изучался в году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается. Исследования фотоэффекта показали, что, вопреки классической электродинамике, энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения. В 1888-1890 годах фотоэффект систематически изучал русский физик Александр Столетов. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта. Фотоэффект был объяснён в году Альбертом Эйнштейном (за что в году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза — если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:
- hν=Aout+mv22{\displaystyle h\nu =A_{out}+{\frac {mv^{2}}{2}}}
где Aout{\displaystyle A_{out}} — т.н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), mv22{\displaystyle {\frac {mv^{2}}{2}}} — кинетическая энергия вылетающего электрона, ν{\displaystyle \!\nu } — частота падаюшего фотона с энергией hν{\displaystyle ~h\nu }, h{\displaystyle ~h} — постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, т.е. существование наименьшей частоты, ниже которой энергии фотона уже не достаточно для того, чтобы «выбить» электрон из металла. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества, на работу, которую необходимо совершить для того, чтобы «вырвать» электрон, и остаток переходит в кинетическую энергию электрона.
Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.
Фотоэффект
Фотоэффект был открыт в 1887 году Г. Герцем.
В опытах с электроискровыми вибраторами Герц установил, что заряженный проводник, освещенный ультрафиолетовыми лучами, быстро теряет свой заряд, а электрическая искра возникает в искровом промежутке при меньшей разности потенциалов.
Фотоэффект – это явление взаимодействия света с веществом, в результате которого энергия фотонов передается электронам вещества.
Различают внутренний и внешний фотоэффект.
Внутренний фотоэффект – изменение концентрации носителей заряда в веществе.
Внешний фотоэффект – явление вырывания электронов с поверхности вещества под действием падающего на него света.
Понятие и свойства фотона
Неотъемлемой частью эффекта является фотон. Это материальная частица, распространяющаяся в виде электромагнитного излучения. Её кинетическая энергия описывается уравнением:
E =mc2, где:
- m — масса фотона;
- c — скорость света.
Импульс кванта совпадает с направлением светового потока и равен произведению массы на скорость. Открыть существование импульса стало возможным лишь после изучения светового давления (сила воздействия электромагнитного излучения). За импульс фотона была принята частица, способная существовать и иметь массу, только перемещаясь со скоростью света.
Объяснение фотоэффекта
С открытием электрона стало ясно, что фотоэффект — это выбивание электронов из вещества. Причем фотоэффект может быть внешним — когда электроны покидают вещество, — а может быть внутренним — когда электроны остаются внутри вещества, лишь меняют свое энергетическое состояние.
Кроме того, было открыто важное свойство фотоэффекта: кинетическая энергия выбитых электронов не зависела от интенсивности облучения. Но она зависела от его частоты
И при некоторой частоте фотоэффект вообще исчезал. Эта минимальная частота была названа «красной границей фотоэффекта».
Попытки объяснения фотоэффекта на основе теории Максвелла терпели неудачу. Непрерывная электромагнитная волна должна была увеличивать кинетическую энергию при увеличении интенсивности.
Объяснить фотоэффект удалось А. Эйнштейну в 1905 г. Для этого он использовал идею М. Планка о том, что, несмотря на волновую природу света, он испускается и поглощается только порциями — квантами. И энергия кванта пропорциональна частоте (коэффициент пропорциональности $h$ был назван «постоянной Планка»):
$$E=h\nu$$
При выбивании электрона из вещества эта энергия будет затрачена на разрыв связей электрона с веществом (совершается работа выхода $A$, своя для каждого вещества), а оставшаяся энергия будет кинетической энергией электрона:
$$h\nu=A_{вых}+{m_ev^2\over 2}$$
Эта формула фотоэффекта объясняет все особенности этого явления.
Увеличение интенсивности света увеличивает число квантов, выбивающих электроны, то есть она пропорциональна числу выбитых электронов. А кинетическая энергия выбитых электронов зависит только от частоты кванта (поскольку работа выхода остается одинаковой).
Кроме того, эта же формула объясняет красную границу фотоэффекта: если частота излучения слишком низка и энергия кванта оказывается меньше работы выхода, фотоэффект исчезает.
Рис. 3. Применение фотоэффекта.
Что мы узнали?
Из курса физики 11 класса известно, что электроны могут покидать атомы вещества под действием излучения. Это явление названо фотоэффектом. Если электроны покидают вещество, то говорят о внешнем фотоэффекте. Если электроны остаются в веществе, лишь меняя свой энергетический уровень, — это внутренний фотоэффект. Теория фотоэффекта была разработана А. Эйнштейном.
-
/10
Вопрос 1 из 10
Уравнение Эйнштейна для фотоэффекта
Теоретическое обоснование законов фотоэффекта было дано А. Эйнштейном.
При падении на металл энергия фотона расходуется на совершение работы выхода электрона из металла и на сообщение ему кинетической энергии:
Если частота световой волны меньше «красной границы» фотоэффекта, то энергии фотона не хватит для того, чтобы вырвать электрон с поверхности металла. Фотоэффект наблюдаться не будет:
Если частота световой волны равна «красной границе» фотоэффекта, то энергии фотона хватит для того, чтобы вырвать электрон с поверхности металла, но не хватит для того, чтобы сообщить электрону кинетическую энергию. Фотоэффект наблюдаться не будет:
Если частота световой волны больше «красной границы» фотоэффекта, то энергии фотона хватит для того, чтобы вырвать электрон с поверхности металла и сообщить ему кинетическую энергию. Фотоэффект будет наблюдаться: .
Явление фотоэффекта
Фотоэффект был открыт во второй половине XIX в. Было обнаружено, что электрические свойства вещества заметно меняются при облучении, причем наиболее сильно изменение происходит при УФ-излучении.
В 1873 г. С. Уиллоуби заметил, что электропроводность селена при облучении заметно меняется. А в 1887 г. Г. Герц открыл, что искровой пробой газа при облучении значительно облегчается.
Эти опыты раскрывают два вида фотоэффекта — внутренний и внешний. В обоих случаях электроны внешних оболочек атома под действием облучения покидают атом. Но при внутреннем фотоэффекте они остаются в веществе. Именно поэтому электропроводность селена увеличивалась: в нём появлялись свободные носители заряда — электроны. А при внешнем фотоэффекте электроны выходят из вещества. Именно поэтому облегчается искровой пробой газа — в газе появляются электроны, которые под действием поля разгоняются и ионизируют газ, создавая искровой пробой.
Возникновение квантовой теории
Основная проблема, с которой физики столкнулись в 90-х годах XIX в., состояла в объяснении спектра теплового излучения абсолютно черного тела.
По мере возрастания температуры максимум интенсивности теплового излучения испускаемого абсолютно черным телом смещается к более высоким частотам, что противоречило законам классической физики. Такое расхождение теории с экспериментом в конце XIX в. получило название «ультрафиолетовой катастрофы».
Новая теория света, предложенная в 1900 г. М. Планком основывалась на том, что атомы излучают свет не непрерывно, а дискретно, т.е. отдельными порциями – квантами. Энергия излучения кванта прямо пропорциональна частоте излучения:
Где h=6,62∙10-34 Дж∙с – постоянная Планка.
В 1905 г. А.Эйнштейн предполагает, что свет не только испускается, но и поглощается квантами.
Для проверки квантовой теории света А.Эйнштейн предложил простой способ: количественные измерения фотоэффекта.
Теория фотоэффекта А. Эйнштейна
В 1905 г. А. Эйнштейн на основе идеи Планка о квантовой природе света разработал теорию фотоэффекта, объясняющей все законы Столетова. Он предположил, что свет существует только в виде порций-квантов (фотонов). Излучаться и поглощаться может только квант целиком. А энергия кванта пропорциональна его частоте ($h$ — постоянная Планка):
При фотоэффекте, согласно законам сохранения, часть этой энергии пойдет на то, чтобы сорвать электрон с орбиты (работа выхода $A$), а остаток электрон получит в виде кинетической энергии. Таким образом, получаем формулу, объясняющую второй и третий законы фотоэффекта:
Действительно, если работа выхода постоянна, то кинетическая энергия выбитых электронов будет зависеть только от частоты облучения. Когда частота снизится настолько, что энергии фотона будет недостаточно для совершения работы выхода, фотоэффект сразу же прекратится.
Фотоэлектрический эффект
Фотоэффект – явление испускания электронов из вещества под действием света.
Явление фотоэффекта было открыто Г.Герцем в 1887 г. и тщательно исследовано А.Г.Столетовым в 1888 г.
Электромагнитное излучение, падает на катод вакуумной трубки через кварцевое окно прозрачное для ультрафиолетовых волн и вырывает электроны, сообщая им некоторую кинетическую энергию. Благодаря этой энергии электроны улетают от катода, а некоторые из них достигают анода, создавая в цепи электрический ток, называемый фототоком.
Напряжение U между анодом и катодом регулируется потенциометром (реостатом). Интенсивность излучения регулируется мощностью лампы, сетками, светофильтрами. Под действием электрического поля электроны движутся от катода к аноду.
При постоянной интенсивности света и при увеличении напряжения между катодом и анодом возрастает сила фототока, но до некоторого максимального значения. Затем фототок остается постоянным. Максимальное значение силы тока Iн называется током насыщения. Таким образом, все электроны, выбиваемые светом из катода, достигают анода. Дальнейший рост тока невозможен.
Ток насыщения определяется числом электронов испускаемых за 1с с освещенного электрода.
Обнаружено что, когда напряжение между электродами равно нулю, ток в таком случае не прекращается.
Если полюсы источника поменять местами, то электрическое поле между электродами будет тормозить вырванные электроны. Прекращение электрического тока в цепи означает, что и самые быстрые электроны, получившие от излучения наибольшую кинетическую энергию, не могут преодолеть пространство между электродами с разностью потенциалов U и возвращаются на катод.
Следовательно, по величине тормозящего напряжения можно определить максимальное значение кинетической энергии (скорости) фотоэлектронов.
При изменении интенсивности падающего излучения тормозящее напряжение не меняется.
При увеличении интенсивности излучения и при постоянном напряжении сила фототока возрастает. Следовательно, сила фототока зависит от интенсивности падающего излучения.
От частоты излучения сила фототока не зависит.
На опыте было установлено, что скорость электронов (их кинетическая энергия) зависит от частоты излучения, но не зависит от его интенсивности.
Из графика видно, что существует определенное значение частоты излучения, ниже которой излучение не вызывает фотоэффекта независимо от его интенсивности. Такое значение частоты получило название красная граница nкр фотоэффекта. Для каждого вещества красная граница имеет свое значение.
Применение фотоэффекта
На фотоэффекте основано действие фотоприборов, получивших разнообразное использование в науки и техники. Самым первым устройством был вакуумный фотоэлемент. Это стеклянный баллон с откачанным воздухом, покрытый слоем фоточувствительного элемента, кроме небольшого участка.
В центре баллона находится сетка, являющаяся анодом. При попадании света на свободный от фотоэлемента участок возникает ЭДС. В зависимости от вида регистрируемого света катод изготавливается из различных материалов. Так, для инфракрасного излучения используется кислородно-цезиевый катод, для ультрафиолетового — сурьмяно-цезиевый.
Элементы вакуумного типа безынерционные, поэтому для них характерна пропорциональность силы фототока от интенсивности светового потока. Эти свойства используются в фотометрии. С их помощью можно не только фиксировать возникновение излучения, но и измерять освещённость. Для увеличения чувствительности баллон наполняется инертным газом. Такие устройства называют газоразрядными фотоэлементами.
Чтобы регистрировать слабый ток, применяют фотоэлектронные умножители, использующие вторичную эмиссию электронов. Элементы с внутренним фотоэффектом называются фоторезисторы. Они более чувствительны, чем газоразрядные. При изготовлении применяются различные полупроводники, такие как PЬS, CdS, PbSе. Их использование позволяет регистрировать излучения даже в далёкой инфракрасной области и рентгеновского излучения. Фоторезисторы изготавливаются небольших размеров, но обладают инерционностью. Поэтому регистрировать быстроизменяющийся свет они не могут.
Вентильные фотоэлементы, работающие на одноимённом эффекте, используются при построении солнечных батарей, источников питания малой мощности. Они непосредственно преобразуют световую энергию в ток, а изготавливают их из германия, кремния, селена. Элемент, в котором преобразуется свет в электрический заряд на p-n переходе, называется фотодиодом. Работать он может как с подключением дополнительного источника питания, так и без него. Принцип действия элемента основан на лавинном пробое, возникающим за счёт ионизации носителей заряда.
Квантовая теория фотоэффекта
А.Эйнштейн “… свет не только испускается, но и поглощается квантами“.
- Следовательно, чем больше квантов энергии попадает на поверхность вещества в единицу времени, тем больше электронов за это же время покидают эту поверхность.
- Если принять, что электрон вылетает с поверхности вещества, только поглотив такой квант энергии, то его энергия определяется энергией кванта, а значит и частотой.
- Наличие красной границы фотоэффекта объясняется необходимостью совершения определенной работы по вырыванию электронов с поверхности вещества. Такую работу называют работой выхода. Если квант излучения, поглощенный электроном, больше, чем работа выхода, то фотоэффект наблюдается. В противном случае электрон просто не может покинуть вещество.
Эйнштейн для описания взаимодействия кванта света с электроном использовал закон сохранения энергии, где энергия кванта электромагнитного излучения, поглощенная электроном при фотоэффекте, расходуется на совершение работы выхода электрона из металла и на сообщение ему кинетической энергии после вылета из вещества.
Эта формула получила название уравнение (формула) Эйнштейна для фотоэффекта.
Таким образом, уравнение фотоэффекта объясняет все законы внешнего фотоэффекта.
Экспериментальное подтверждение квантовых свойств света.
Явление фотоэффекта и его закономерности могут быть объяснены на основе предложенной в 1905 г. Эйнштейном квантовой теории, согласно которой свет частотой n не только испускается, как это предполагал Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), с энергией E=hn. Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов (фотонов), движущихся со скоростью распространения света в вакууме. По Эйнштейну, каждый квант поглощается только одним электроном. Поэтому число вырванных электронов должно быть пропорционально интенсивности света (1-й закон фотоэффекта). Безынерционность фотоэффекта объясняется тем, что передача энергии при столкновении фотона с электроном происходит почти мгновенно.
Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла и на сообщение вылетевшему фото-электрону кинетической энергии . По закону сохранения энергии
(5.8.1)
Уравнение (5.8.1) называется уравнением Эйнштейна для внешнего фотоэффекта.
Оно позволяет объяснить 2-й и 3-й законы фотоэффекта. Из (6.14) непосредственно следует, что максимальная кинетическая энергия фотоэлектрона линейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности (числа фотонов), потому что ни А, ни n от интенсивности света не зависят. Так как с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (для данного металла А=const), то при некоторой достаточно малой частоте n=n0,она станет равной нулю и фотоэффект прекратится. Согласно изложенному, из (6.14) получим, что
(5.8.2)
и есть «красная» граница фотоэффекта для данного металла. Она зависит лишь от работы выхода электрона, т.е. от химической природы вещества и состояния его поверхности.
Выражение (5.8.1) с учетом (5.7.2) и (5.8.2) можно записать в виде
.
Уравнение Эйнштейна было подтверждено опытами Милликена. Все это является доказательством правильности уравнения Эйнштейна, а вместе с тем и его квантовой теории фотоэффекта.
Если интенсивность света очень большая, то возможен многофотонный (нелинейный) фотоэффект, при котором электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от N фотонов (N = 2 . 7). Уравнение Эйнштейна для многофотонного фотоэффекта:
.
В опытах с фокусируемыми лазерными пучками плотность фотонов очень большая, поэтому электрон может поглотить не один, а несколько фотонов и при этом приобрести энергию, необходимую для выхода из вещества. Даже под действием света с частотой меньше «красной» границы — порога однофотонного фотоэффекта. В результате «красная» граница смещается в сторону более длинных волн. Идея Эйнштейна о распространении света в виде потока отдельных фотонов и квантовом характере взаимодействия электромагнитного излучения с веществом подтверждена в 1922 г. опытами А.Ф. Иоффе и Н.И. Добронравова.
Дата добавления: 2015-06-01 ; просмотров: 2774 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Теория фотоэффекта
Попытки описания фотоэффекта с точки зрения электродинамики Максвелла не привели к успеху. Энергия выбитых из вещества электронов не зависела от мощности облучения, но зависела от его частоты. Более того, если облучение имело частоту ниже некоторого значения (красной границы фотоэффекта), фотоэффект вообще исчезал, что было необъяснимо в рамках классических представлений.
Объяснить наблюдаемые закономерности удалось А. Эйнштейну в 1905 г. Для этого пришлось отказаться от максвелловского представления света как непрерывной электромагнитной волны.
В 1900 г. М. Планк разрабатывал теорию теплового излучения и пришел к выводу, что оно излучается не непрерывно, а порциями — квантами. Причем энергия кванта пропорциональна частоте:
$$E=h\nu$$,
где:
- $\nu$ — частота кванта;
- $h=6,63×10^{-34}$Дж×с — специальный коэффициент, названный постоянной Планка.
А. Эйнштейн развил эту гипотезу, утверждая, что и тепловое излучение, и свет не только испускается, но и поглощается и всегда существует только в виде таких квантов. Квант света (фотон) неделим, он может быть только целиком поглощен или целиком испущен.
Рис. 2. Основные свойства фотона.
Все эти утверждения позволяют объяснить закономерности фотоэффекта. Для того чтобы выбить электрон из атома, необходимо сообщить ему некоторую энергию, которая называется работой выхода $A_{вых}$, специфичную для каждого вещества. Если фотоны не обладают такой энергией, электроны не будут выбиты, фотоэффект исчезает:
$$h\nu > A_{вых}$$
А поскольку энергия фотона пропорциональна частоте, то фотоэффект исчезает, если частота света окажется менее некоторой минимальной частоты, которая называется «красной границей фотоэффекта»:
$$\nu_{кр.гр} = {A_{вых}\over h}$$
Фотоэффект возможен только для излучения с большей частотой. Часть энергии фотона будет затрачена на вырывание электрона из вещества, а остаток этой энергии будет сообщен электрону в виде кинетической энергии:
$$h\nu = A_{вых}+{m_эv^2\over 2}$$
Из этой формулы можно понять, почему энергия выбитых электронов не зависит от интенсивности облучения. Интенсивность облучения — это количество фотонов, падающих на вещество в единицу времени. Если ее увеличивать (при постоянной частоте излучения), то это приведет к увеличению числа выбитых электронов. Однако их кинетическая энергия при этом будет постоянной.
По измеренной красной границе фотоэффекта и энергии выбитых электронов можно найти значение постоянной Планка. Оно оказывается точно таким же, как установленное по спектрам теплового излучения. Совпадение значений физических постоянных, полученное различными методами, — это серьезное доказательство существования квантов электромагнитного излучения.
Рис. 3. Экспериментальное определение постоянной Планка.
Что мы узнали?
Фотоэффект — это выбивание из вещества электронов под действием квантов электромагнитного излучения. Согласно теории фотоэффекта Эйнштейна, энергия кванта равна сумме работы выхода и кинетической энергии выбитых электронов, поэтому кинетическая энергия этих электронов зависит только от частоты излучения.
-
/10
Вопрос 1 из 10
Уравнение Эйнштейна
Под лучистой энергией понимают электромагнитное излучение в широком диапазоне частот. Каждый фотон несёт определённую энергию, которую он может передать частице при столкновении, в частности, электронам. При ударе носители мгновенно приобретают кинетическую энергию. Предположения Планка о способности тела излучать часть поглощённой энергии и распространять его квантами единичной энергии было описано уравнением E = hv, где
- Е — энергия, переносимая единичным квантом;
- h — постоянная Планка, рассчитанная экспериментально и равная 6,626 x 10 -34 Дж·с ;
- v — частота излучения, определяемая отношением скорости света к длине волны.
Эйнштейн, основываясь на идее Планка, доказал, что свет представляет собой дискретные пучки энергии, названные им впоследствии фотонами. При этом они обладают дуализмом. Кроме распространения подобно волнам, при столкновении с электронами фотон ведёт себя как частица, выбивающая его из кристаллической решётки.
На основании этих предположений физик изменил уравнение до вида:
E = hv — φ,
где фи обозначает минимальную энергию, необходимую для выбивания электрона из атома.
Максимальная же кинетическая энергия фотоэлектрона определяется отношением (mu2)/2. При вылете электрона энергия частички уменьшается на определённое значение — работу выхода (Авых). То есть это энергия, которая затрачивается для эмиссии электрона. Поэтому формулу Планка можно переписать как hv = Aвых + (m*u2)/2. Это выражение и получило название уравнения Эйнштейна.
Если к телу приложить напряжение обратной полярности, препятствующее вылету электронов, то работа выхода увеличится, так как частицам придётся преодолевать ещё и силу электрического тока. Наибольшая же кинетическая энергия выражается формулой: Емах = e*U, где U — задерживающее напряжение, а e — элементарный заряд.
Наименьшую энергию назвали красной границей. Согласно определению эффекта, она зависит лишь от работы выхода. Из уравнения Эйнштейна можно получить предельное значение длины волны, которая прямо пропорциональна произведению c*h и обратно пропорциональна работе выхода. При длинах, расположенных возле красной границы, фотоэффект не возникает.
Краткие итоги:
Явление фотоэффекта открыто Г. Герцем в 1887 г. и исследовано Столетовыми Ленардом в 1888 г. Объяснение фотоэффекта противоречило волновой теории света.
Опираясь на идеи Планка о квантовом характере излучения, Эйнштейн в 1905 г.создал теорию фотоэффекта. Свет рассматривался в ней как фотонный газ – электромагнитное излучение, состоящее из потоков световых квантов (фотонов) с энергией E=hν, обладающей скоростью (с), массой (m), импульсом (p), частотой (ν), длиной волны (λ). Применяя закон сохранения энергии, Эйнштейн получилуравнение для фотоэффекта, описывающее взаимодействие одного кванта света с одним электроном:
Данное уравнение позволило объяснить экспериментальные факты, полученные в ходе исследования фотоэффекта с квантовой позиции.