Уравнение изотермы химической реакции примеры

Вывод и анализ уравнения изотермы химической реакции

Уравнение изотермы химической реакции примеры

ЛЕКЦИЯ № 5. Химическое равновесие

1. Понятие химического равновесия. Закон действующих масс

При протекании химической реакции через некоторое время устанавливается химическое равновесие. Существует два признака химического равновесия: кинетический, термодинамический. В кинетическом – ?пр = ?обр, в термодинамическом – характеризует химическую реакцию при условиях P, t – const (?G = 0); при условиях V, Т – const (?F = 0).

Химический потенциал – функция, которая характеризует состояние i-го компонента при определенных внешних условиях.

где n1 число молей i-го компонента.

Если к бесконечно большому количеству раствора прибавить определенное количество какого-нибудь компонента, то химический потенциал системы определяется изменением изобарного потенциала при изобарных условиях или изменением изохорного потенциала при изохорных условиях.

Химический потенциал зависит от концентрации данного компонента

где Рi– парциальное давление – вклад каждого компонента в общее давление или давление, которое компонент имел бы, если бы находился в смеси.

Парциальное давление – элементарная функция (можно складывать). Пример (O2, N2, H2) – их общее давление

?– значение химического потенциала при стандартных условиях.

Химический потенциал характеризует способность данного компонента выходить из данной фазы путем испарения, растворения, кристаллизации и т. д. Переход этот происходит произвольно.

В результате химического равновесия скорость прямой реакции уменьшается, а скорость обратной реакции увеличивается.

Концентрации, которые соответствуют химическому равновесию, называются равновесными концентрациями. Связь между равновесными концентрациями устанавливается законом действующих масс (ЗДМ). Этот закон в 1867 г. вывели К. М. Гульберг и П. Вааге.

Кинетический вывод ЗДМ

f – фугитивность – парциальное давление для реальных газов. Возникает вопрос, будут ли равняться Кpи Кс.

Кpи Кc отличаются на RT ?vi в сумме стехиометрических коэффициентов.

если ?vi = 0, то Kp = Kc. ?vi = 1 + 1 – 1 – 1 =0 – когда стехиометрический коэффициент = 1.

2. Уравнение изотермы химической реакции

Если реакция протекает обратимо, то ?G= 0.

Если реакция протекает необратимо, то ?G? 0 и можно рассчитать изменение ?G.

где ? – пробег реакции – величина, которая показывает, сколько молей изменилось в ходе реакции. I сп – характеризует равновесное и неравновесное состояние реакции, II сп – характеризует только неравновесные состояния.

это уравнение изотермы химической реакции.

С помощью уравнения изотермы химической реакции можно судить о направлении протекания реакции.

3. Уравнения изохоры, изобары химической реакции

Зависимость К от температуры

По ним судят о направлении протекания реакции:

4. Расчет KP (метод Темкина-Шварцмана)

термодинамический метод расчета Kp.

Пример. Расчет Kpдля реакции PbS04 распадается на РbО и S03.

Результаты вычислений занесены в таблицу 2.

5. Расчет равновесного состава химического равновесия

Равновесный состав можно рассчитать только для газовой системы

Исходная концентрация всех компонентов

Изменение каждого компонента по числу молей (или стехиометрическому коэффициенту):

??– (пробег реакции) – химическая переменная.

Она показывает изменение количества вещества по числу молей. Если реакция не началась, то ?? = 0. Если количество исходных веществ превратилось в такое же количество продуктов реакции, то ?? = 1.

Рассчитать равновесный состав по третьему компоненту при условии, что А = а моль/л; В = в моль/л.

Рассчитываем по 4 компоненту:

Газообразные вещества реагируют по уравнению:

Найти парциальное давление каждого компонента.

Вещества А и В превращаются в С в количестве Х. Исходные вещества А= 2 моль, В= 1 моль.

Для того, чтобы найти парциальное давление, мы должны Роб умножить на мольную долю. Мольная доля определяется отношением числа молей каждого компонента, отнесенного к общему числу молей всех компонентов.

где En– общее число молей, участвующих в этой газовой смеси.

где РА парциальное давление.

Изотерма химической реакции и ее применение для подбора условий проведения реакций

Автор работы: Пользователь скрыл имя, 15 Сентября 2014 в 12:51, реферат

Краткое описание

Уравнение изотермы Вант-Гоффа позволяет рассчитать максимальную работу химической реакции и тем самым определить возможность её самопроизвольного протекания в каких-либо конкретных условиях (при температуре Т и концентрациях реагентов Ci или парциальных давлениях Pi).По условиям проведения реакции делятся на изотермические и неизотермические. Изотермические реакции протекают при постоянной температуре, а неизотермические – при непостоянной температуре. Химическое взаимодействие реагентов может происходить с выделением или без выделения тепла, в связи, с чем и происходит изменение температуры реакции.

1. Введение…………………………………………………………..32. Химическое равновесие в гомогенных системах………………43. Уравнение изотермы Вант – Гоффа…………………………. 64. Правило Вант-Гоффа…………………………………………….85. Литература ……………………………………………………….9

ИЗОТЕРМА ВАНТ — ГОФФА, ВЫВОД И АНАЛИЗ

Константа равновесия определяют условия равновесия, когда концентрация (парциальные давления) является равновесными. В каком направлении пойдёт химическая реакция, если парциальное давление исходных веществ и продуктов реакции отличаются от равновесных? Ответить на этот вопрос поможет уравнение изотермы химической реакции.

Рассмотрим уравнение реакции: aA + bB cC + dD

Для изобарно-изотермического процесса изменение Гиббса равно:

P’- неравновесное, парциальное давление компонентов.

где =

— по форме записи напоминает константу равновесия, но отличается тем, что вместо равновесных давлений в него входят величины давления в данный момент времени.

( ) — это выражение, куда входят величины концентраций в данный момент времени.

АНАЛИЗ ИЗОТЕРМЫ ВАНТ-ГОФФА

1. Главное значение изотермы реакции состоит в том, что она позволяет рассчитать ∆Gили ∆Fобратимый реакции для заданного состава реакционной смеси и определить, в каком направлении, и до какого предела протекает реакция при известных условиях.

а) Если Кр˃Кр’, то lnКр˃lnКр’; ∆G˂0- реакция идет самопроизвольно в прямом направлении.

б) Если Кр˂Кр’, то lnКр˂lnКр’; ∆G˃0- реакция протекает самопроизвольно в обратном направлении, в сторону образования продуктов.

в) Если Кр=Кр’, то lnКр=lnКр’; ∆G=0- равновесие.

Если парциальное давление всех участников реакции в данный момент времени равны атмосферному давлению

Пусть PA’=PB’=PC’=PD’=1( 1,013*10 5 Па), тоKp’=1; Тогда логарифм этого выражения будет равен нулю (lnKp’=0), а уравнение изотермы Вант – Гоффа примет вид:

∆G⁰=RTlnKp-стандартная энергия Гиббса

Выразм константу равновесия из последнего уравнения и получим:

Пример решения задачи:

В объеме 10л, взяли: 320(г) О2 , 10(г) Н2 и 180(г) паров воды . Определите, в какую направлении пойдёт химическая реакция: , если при температуре Т

(Кс=10). Процесс изохорный.

;

;

;

;

;

;

˂0 — реакция идет в прямом направлении.

ВЛИЯНИЕ ВНЕШНИХ УСЛОВИЙ НА КОНСТАНТУ

РАВНОВЕСИЯ. УРАВНЕНИЕ ИЗОБАРЫ И ИЗОХОРЫ ВАНТ-ГОФФА (В-Г)

Константы равновесия — это величины постоянные при данной температуре. При изменении температуры константа равновесия изменяется, и довольно существенно.

Изменение константы равновесия и направления химической реакции в зависимости от температуры количественно характеризует уравнение изобары изохоры химической реакции.

ВЫВОД УРАВНЕНИЯ ИЗОБАРЫ И ИЗОХОРЫ

Разделим уравнение изотермы Вант- Гоффа на температуру:

Продифференцируем его по Т и перепишем:

Представим уравнение Гиббса – Гельмгольца в виде:

Из уравнения (1) вычтем уравнение (2):

Эти уравнения показывают влияния температуры на константу равновесия, где определяющим фактором является тепловой эффект химической реакции.

Влияние температуры на константу равновесия определяется типом реакци.

В обратном — Т↓,Кр↓.

2. Если ∆H(∆U)˂0 (экзотермическая, выделение), то ˂0, тогда при повышении температуры константа равновесия Кр уменьшается или Кр увеличивается при понижении температуры.

3. Если ∆H(∆U)=0 , тов этом случае константа равновесия не зависит от температуры Кp ≠ f(T).

ИНТЕГРИРОВАНИЕ ИЗОБАРЫ В-Г

1. Приближенное интегрирование ∆Н ≠ f(Т),

тогда ;

;

;

;

;

.

С помощью этого уравнения можно найти:

1. ∆Н (тепловой эффект реакции), если известны равновесия при двух различных температурах (Кр11) и Кр22))

2. Кр22) – константу равновесия при температуре Т2, если известна константа равновесия при другой температуре и тепловой эффект реакции (Кр11) и ∆Н).

Так как после интегрирования мы получили уравнение прямой, то эта зависимость может быть представлена на графике: lnKp(1) lnKp(2)

Тангенс угла наклона прямой реакции, исходя из уравнения прямой:

;.

Зависимость теплового эффекта от температуры выражается уравнением:

Подставим это уравнение в уравнение изобары Вант- Гоффа:

;

при Т=0(К)

Проинтегрируем это уравнение и получим:

;

где В — постоянная интегрирования, для нахождения необходимо знать значения константы равновесия Кр при любой фиксированной температуре.

Однако проводить расчеты с использованием данного уравнения довольно сложно и используется довольно редко.

Пример. Определим изменение эффекта реакции Fe+H2O+FeO+H2, если для Т1=900К, Кр1=1,452, а для Т2=1025К Кр2=1,285.

Используем уравнение:

При повышении температуры от 900 до 1025К выделится дополнительно 7,5 кДж/моль теплоты.

| следующая лекция ==>
Метод статистического моделирования нагрузки на ЭВМ | Строение и характеристика макроэргических соединений на примереАТФ

Дата добавления: 2016-02-02 ; просмотров: 9770 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Понравилась статья? Поделиться с друзьями:
Карта знаний
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: