Характеристики электрического поля и его основные свойства

Электрическое поле

Электрическое поле

Многочисленные опыты по притяжению или отталкиванию заряженных тел свидетельствуют о том, что электрически заряженные тела взаимодействуют на расстоянии. Но остаётся неясным вопрос о том, как именно одно заряженное тело воздействует на другое.

ОКАЗЫВАЕТ ЛИ ВЛИЯНИЕ ВОЗДУХ НА ВЗАИМОДЕЙСТВИЕ МЕЖДУ ЗАРЯДАМИ

Мы вправе задать вопрос: нет ли между заряженными телами какой-либо материальной связи, например невидимых нитей или элементов среды, посредством которых осуществляется взаимодействие? Может быть, здесь главную роль играет воздух, находящийся между заряженными телами? Для проверки обратимся к опыту. Поместим под колокол воздушного насоса заряженный электроскоп и выкачаем из-под него воздух. В безвоздушном пространстве лепестки электроскопа отталкиваются так же, как и в воздушной среде. Следовательно, воздух не является посредником, осуществляющим взаимодействие между заряженными телами.

https://youtube.com/watch?v=m-vTmxe0gwY

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Великий английский физик Майкл Фарадей впервые выдвинул идею, что электрически заряженные тела не действуют друг на друга непосредственно. Каждое из них создаёт в окружающем пространстве электрическое поле.

Понятие поля в современной физике занимает одно из центральных мест. Электрическое поле — это особый вид материи, оно непрерывно в пространстве и оказывает воздействие на другие заряды. По мере удаления от заряда, создающего поле, действие поля ослабевает.

Электрическое поле, как и электрический заряд, можно изучать через его взаимодействие с окружающими телами. Действие электрического поля можно обнаружить, если поместить в это поле какое-либо заряженное тело.

Окончательное развил идеи Фарадея и создал теорию электромагнитных явлений английский учёный Дж. Максвелл.

Идея прямого взаимодействия тел была впервые использована Ньютоном при формулировке закона всемирного тяготения. В учении об электричестве вначале также возникла теория прямого действия на расстоянии через пустоту (теория дальнодействия). Эксперименты подтвердили правильность гипотезы Фарадея, бывшего противником теории дальнодействия.

ПОНЯТИЕ ТОЧЕЧНОГО ЗАРЯДА

Мы уже знаем, что носителем элементарного заряда является электрон. Он входит в состав атомов, из которых построены тела.

Проведём аналогию с задачей о движении тела, для удобства описания которого мы вводили понятие точки и далее говорили о траектории точки, скорости точки и т. п. При изучении электрических явлений и их описании вводится понятие точечного заряда, т. е., говоря о взаимодействии заряженных тел, мы будем рассматривать взаимодействие точечных зарядов.

Итак, точечным зарядом называют заряженное тело, размерами которого можно пренебречь.

https://youtube.com/watch?v=dA-r9-qi6Vo

СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Наши представления о свойствах электрического поля складываются на основе опытов по взаимодействию заряженных тел.

Главное свойство электрического поля — способность действовать на отдельные заряженные частицы (электроны, ионы, протоны) и на электрически заряженные тела с некоторой силой. Основные характеристики поля можно установить, изучив его действие на точечный (пробный) заряд.

Для наглядности электрическое поле принято изображать при помощи так называемых силовых линий.

Силовые линии поля точечного заряда начинаются на положительном заряде и выходят из него. При этом каждая силовая линия заканчивается на отрицательном заряде.

Изображение электрического поля при помощи силовых линий позволяет наглядно представить степень воздействия поля на заряд: чем гуще силовые у линии, тем сильнее поле действует на заряд.

Силовые линии электрического поля можно наблюдать на опыте. Если мелкие кусочки шерсти насыпать на стеклянную пластинку и поместить её над заряженным телом, то кусочки шерсти под действием электрического поля переориентируются. Они расположатся вдоль силовых линий электрического поля.

Силовые линии нигде не пересекаются. Это показано на примере поля двух одноименных точечных зарядов и двух разноимённых.

Майкл Фарадей (1791—1867) — английский физик и химик, основоположник учения об электромагнитном поле.

Джеймс Клерк Максвелл (1831 — 1879) — английский физик, создатель классической электродинамики, один из основателей статистической физики.

Вы смотрели Конспект по физике для 8 класса «Электрическое поле».

Вернуться к Списку конспектов по физике (Оглавление).

Просмотров: 11 836

Статическое и вихревое поле

Как упоминалось в начале статьи, электрическое поле может возникать вокруг переменного магнитного поля. Оно даже создает ток, что может быть достигнуто двумя путями:

  • изменением интенсивности магнитного поля, проходящего сквозь контур проводника в нем;
  • изменением положения самого проводника.

При этом проводнику вовсе не обязательно быть замкнутым — ток в нем все равно будет течь.

Для иллюстрации отличий статического и вихревого поля можно составить таблицу.

Параметр Электростатическое Вихревое
форма силовых линий разомкнутые замкнутые
чем создается неподвижным зарядом переменным магнитным потоком
источник напряженности заряд отсутствует
работа по перемещению в замкнутом контуре нулевая создает ЭДС индукции

Нельзя сказать, что первое и второе поле никак между собой не связаны. Это не так. В реальности работает такая закономерность: неподвижный заряд создает электростатическое поле, которое движет заряд в проводнике; движущийся заряд порождает постоянное магнитное поле. Если заряд движется с непостоянной скоростью и направлением, то магнитное поле становится переменным и создает вторичное электрическое. Таким образом, электрическое поле и его характеристики влияют на возможность возникновения магнитного и его параметры.

Обнаружение электрического поля

Мы попытались вам рассказать все важные определения и условия существования электрического поля простым языком. Давайте разбираться, как его обнаружить. Магнитное обнаружить легко – с помощью компаса.

Электрическое поле мы можем обнаружить в быту. Все мы знаем, что если потереть пластиковую линейку об волосы, то мелкие бумажки начнут к ней притягиваться. Это и есть действие электрического поля. Когда вы снимаете шерстяной свитер, слышите треск и видите искорки – это оно же.

Другим способом обнаружить ЭП – поместить в него пробный заряд. Действующее поле отклонит его. Это применяется в ЭЛТ мониторах и, соответственно, лучевых трубках осциллографа, об этом поговорим позже.

Основные характеристики

Их можно описать при помощи математических закономерностей, а некоторые — выразить графически. Последние характеристики являются векторными, то есть имеющими направление

Это важно, поскольку при решении практических задач часто приходится оперировать не модулем величины, а проекцией вектора на какую-либо выбранную ось

Основными параметрами поля являются:

  1. напряженность;
  2. потенциал;
  3. индукция.

Напряженность поля

Это силовая характеристика электрического поля. Величина это векторная, и она характеризует силу, с которой поле воздействует на заряд в конкретной точке. Математически это выражается так:

Ē = F̄/q.

Если подставить сюда формулу закона Кулона, то получим:

Ē = q₀ / 4 π ε ε₀ r ².

Если поле создано двумя зарядами, то результирующая напряженность рассчитывается графически — при помощи сложения векторов напряженностей от каждого отдельного источника. Этот способ получил название принципа суперпозиции.

Потенциалы и их разность

Электрическое поле способно совершать работу. Если пробный заряд передвигать в поле, то работа, выполненная эл. полем, будет зависеть от начального и конечного расстояние от пробного заряда до центра эл. поля. Сравнить это можно с человеком, который собрался прыгать с крыши. Пока он находится на высоте десятого этажа, его потенциальная энергия будет равна:

W = -GMm / Rr.

Или если учесть соразмерность земли и человека:

W = mgh.

Пока человек не прыгнул, он обладает потенциальной энергией. Когда же он, наконец, упадет, гравитационное поле совершит работу, численно равную вышеуказанной величине. При этом не учитывается горизонтальное перемещение — эту работу совершал сам покойный.

W = q₁ q₀ / 4 π ε ε₀ r.

При перемещении в другую точку, когда расстояние r будет иным, поле совершит работу, равную:

A = W₁ — W₂ = q₁ q₀ /4 π ε ε₀ r₁ — q₁ q₀ / 4 π ε ε₀ r₂.

Если из обоих слагаемых выделить параметр, который относится непосредственно к полю, а не к пробному заряду, он будет выглядеть так:

φ₁ = q₀ /4 π ε ε₀ r₁; φ₂ = q₀ / 4 π ε ε₀ r₂.

И вот это φ и называется потенциалом поля в точке. Исходя из всех написанных выше формул, можно выразить эту величину так:

φ ₁ = W₁ / q₁; φ₂ = W₂ / q₁.

Таким образом, работа, которую совершит поле, будет выражена следующим образом:

A = W₁ — W₂ = φ₁ q₁ — φ₂ q₁ = q₁ (φ₁ — φ₂).

Выражение в скобках будет называться разностью потенциалов, или напряжением. Она показывает, какую работу совершит поле по перемещению пробного заряда.

A/q = (φ₁ — φ₂).

Единица этой величины, Дж/Кл, получила название Вольт, в честь ученого Алессандро Вольта. От этой единицы отсчитывают размерность и других величин в электростатике и электродинамике. Например, напряженность поля измеряется в В/м.

Электрическая индукция

Эта величина характеризует электрическое поле, что называется, в чистом виде. В реальности мы имеем дело с полем в различных средах, имеющих определенную диэлектрическую проницаемость. Несмотря на то что для большинства веществ это табличная величина, в ряде случаев она непостоянна, а ее зависимость от параметров среды (температура, влажность и т. д. ) нелинейна.

Такое явление характерно для сегнетовой соли, титаната бария, ниобата лития и ряда других.

D = ε ε₀ E.

Это тоже векторная величина, направление которой совпадает с направлением напряженности.

Электрический заряд

Понятие электрического заряда занимает центральное место в классической теории электромагнетизма. Электрическим зарядом в физике называется величина, которая характеризует способность объектов входить в электрические взаимодействия. Следует подчеркнуть, что тела с одноимёнными зарядами всегда отталкиваются, а тела с разноимёнными – притягиваются друг к другу.

Электрический заряд

Фундаментальная характеристика заряда заключается в его двойственной природе: заряды бывают и положительными, и отрицательными. Так, все заряженные тела условно делятся физиками на два подтипа, при этом все тела одного из подтипа отталкивают друг друга, но притягивают тела из второго подтипа. Например, если частица А отталкивает частицу В, но частица А притягивает частицу С, то частица В тоже будет притягивать частицу С.

Физики до сих пор не выяснили, почему тела обладают этим глобальным, универсальным и, при ближайшем рассмотрении, элементарным свойством. Тем не менее, термины «отрицательный заряд» и «положительный заряд» являются противоположными проявлениями одного и того же качества.

Заряженная частица всегда рождается в паре с частицей противоположного заряда. Например, пара положительно и отрицательно заряженных электронов (позитрон и негатрон) появляется на свет посредством распадения фотона. При этом процессе изменения заряда не происходит, другими словами, изменение заряда равно нулю до и после «превращения» фотона.

Чтобы понять, в чём заключается сущность данной скалярной величины и из чего состоит электрическое вещество, следует изучить два фундаментальных свойства электрического заряда: квантование и сохранение заряда.

Принцип квантования заряда

Даже начинающий физик знает: в природе электрические заряды состоят из дискретных зарядов, имеющих постоянную величину, которая характеризуется как заряд электрона и обозначается символом е. Например, положительный заряд позитрона и отрицательный заряд негатрона равны по своей величине. Квантование заряда – это и есть природное уравнивание величин зарядов двух разноимённо заряженных частиц

Важное понятие в терминологии квантования – дискретность заряда. Согласно новейшим физическим теориям, заряд квантуется, то есть обладает свойством дискретности: один заряд состоит из минимальных порций зарядов, которые далее разделить невозможно

Принцип сохранения заряда

Этот принцип следует из природы «рождения» двух миркотел, имеющих разноимённые заряды. Это фундаментальный эмпирический закон, не имеющий противоречий ни в одном из сделанных до сегодняшнего дня исследований. Дословно принцип сохранения гласит: в закрытой системе электрический заряд, носящий и другое название – алгебраическая сумма двух разноимённых зарядов, –остаётся постоянным.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​\( \varphi \)​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​\( \Delta\varphi \)​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​\( U \)​ и называют напряжением.

Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки

В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​\( q \)​ в точке, удаленной от него на расстояние ​\( r \)​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​\( r =R \)​, где ​\( R \)​ – радиус шара). Напряженность поля внутри шара равна нулю

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

VI. Оценка минимального заряда, достаточного для воспламенения опасных атмосфер

При определении эффективности применения антистатического ионизатора ЕХ1250 во взрывоопасной среде может возникнуть вопрос о количественной оценке остаточного статического поля на предмет возможности привести к воспламенению или взрыву в опасной атмосфере, возникающей в производственном процессе.

Увы, на этот вопрос вряд ли есть точный и однозначный ответ, так как степень опасности зависит от того, способен ли накопленный заряд генерировать электрическое поле с достаточным напряжением, чтобы сформировать пробой на материале с последующим разрядом, содержащим энергию, большую, чем минимальная энергия воспламенения горючей атмосферы данного процесса.

Конечно, различные виды разрядов требуют различных условий для их возникновения, например, искровой разряд, кистевой разряд и т.д.

Самый лучший международный источник информации по теме, касающейся статических опасностей — это руководство IEC60079-32-1, но и оно не дает никаких точных значений напряжений, но тем не менее в разделе 7.1.5. “Невоспламеняющие разряды при операциях с жидкостями” утверждает следующее:

Далее раздел A.3. “Электростатические разряды” дает описание статического разряда:

А.3.2. Искры

Искра — это разряд между двумя проводниками, жидкими или твердыми. Она характеризуется ярко выраженным световым каналом разряда, несущим ток высокой плотности. Газ ионизирован на всю длину канала. Разряд очень быстрый и вызывает резкий треск.

Искра происходит между двумя проводниками, когда напряженность поля между ними превышает электрическую напряженность атмосферы. Разница потенциалов между проводниками, необходимая для пробоя, зависит как от формы так и от расстояния между проводниками. Для сравнения: напряженность пробоя для поверхностей плоских или с большим радиусом искривления при расстоянии 10 мм или более между ними составляет 3 МВм-1 (300 В на мм) в нормальном воздухе и увеличивается при увеличении расстояния.

Поскольку объекты, между которыми проскакивает искра, являются проводниками, преобладающая часть сохраненного заряда проходит через искру. В большинстве случаев на практике это рассеивает почти всю сохраненную энергию. Энергия искры между проводящим телом и проводящим заземленным объектом может быть вычислена по следующей формуле:

W = ½ Q V = ½ C V2,

где

  • W — рассеянная энергия в джоулях,
  • Q — количество заряда на проводнике в кулонах,
  • V — его потенциал в вольтах,
  • C — его емкость в фарадах.

Результатом расчета является максимальное количество энергии. Энергия искры будет меньше, если есть сопротивление в пути разряда на заземление. Типичные значения емкостей проводников даны в таблице ниже:

Таблица А.2 Значения емкостей типичных проводников
Объект Емкость в пФ(1 пФ = 1х10-12 Ф)
Мелкие металлические предметы (наконечник шланга, ковш) от 10 до 20
Малые контейнеры (корзина, барабан до 50 л) от 10 до 100
Средние контейнеры (250 — 500 л) от 50 до 300
Крупные объекты (реакторы, окруженные заземленными структурами) от 100 до 1000
Тело человека от 100 до 200

Исходя из того, что искра может возникать как между жидкими, так и твердыми проводниками, мы можем принять в качестве примерной оценки нижнего порога для разряда в 5-10 кВ, что очень приблизительно и не учитывает ни форму проводников, ни состав и концентрацию газовой смеси.

Также в заключение можно сказать, что фактическая возможность пожара или взрыва всегда зависит не только от напряжения, но и емкости проводника и минимальной энергии воспламенения окружающей атмосферы данного производственного процесса.

Вернуться к списку для выбора раздела.

Общая характеристика

Электрическим полем называется специфическая разновидность материи, формируемая микротелами, имеющими заряды. Тем не менее, это не только совокупность заряженных тел: данным термином именуется также микрополе, которое формирует в пространстве каждое заряженное тело. Именно совокупность этих микрополей и создаёт электрические поля в привычном для нас понимании.

Существование и непрерывное функционирование электрического поля обусловлено непрерывным взаимодействием частиц, имеющих заряды, в ходе которого они непосредственно сообщают электромагнитную энергию один другому посредством электрических полей, которые окружают каждое из них. Графически электрическое поле следует изображать в виде схематичной совокупности линий, в физической науке именуемых силовыми.

Силовые линии

Благодаря достижениям современной физики мы знаем, что электрические силы объясняют все химические и физические свойства веществ, от атома до животной клетки. Естествоиспытателями, которые заложили фундамент научного знания об электрическом поле, были Андре-Мари Ампер, Майкл Фарадей и Джеймс Клерк Максвелл.

Воздействие электрического поля на жизнь и здоровье человека

Электрическое поле волны низкой частоты, которые образуют заряд на теле человека и остаются на довольно неглубоком расстоянии от его поверхности. Протекающие в человеческом теле токи могут изменить направление своего движения под воздействием полей с переменным электротоком. Именно по этой причине некоторые люди чувствуют «шевеление» волос, когда находятся на территории воздушных линий электропередач переменного тока.

Электрическое поле может нанести человеку непоправимый вред. Как правило, негативное воздействие электричества происходит, когда люди регулярно пользуются мобильными телефонами.

Ещё один пример возможного наблюдения электрического поля в повседневной жизни – его возникновение вблизи дисплеев телевизоров с кинескопом. Если поднести руку к экрану такого телеприёмника, волоски на ней словно «вздыбятся». Это явление происходит именно из-за воздействия электрического поля.

Еще рекомендую посмотреть лекцию профессора на тему «Электрическое поле»:

Электрический диполь

Данный термин обозначает элементарную совокупность точечных зарядов, которые имеют системные признаки. Диполем называется сумма зарядов, противозначных, но равных по величине, и сдвинутых один от другого на определённое расстояние.

Диполи бывают разные, но наибольшее внимание физическая наука уделяет точечным диполям. Так называются диполи, которые характеризуются пренебрежимо маленьким расстоянием от отрицательного заряда до положительного

Если в теории совокупность зарядов разделить на множество частей, её можно будет рассматривать как систему электрических диполей.


Электрический дипольный момент

Напряженность электрического поля

Напряженность электрического поля ​\( \vec{E} \)​ – векторная физическая величина, равная отношению силы ​\( F \)​, действующей на пробный точечный заряд, к величине этого заряда ​\( q \)​:

Обозначение – \( \vec{E} \), единица измерения в СИ – Н/Кл или В/м.

Напряженность поля точечного заряда в вакууме вычисляется по формуле:

где \( k=\frac{1}{4\pi\varepsilon_0}=9\cdot10^9 \) (Н·м2)/Кл2,
​\( q_0 \)​ – заряд, создающий поле,
​\( r \)​ – расстояние от заряда, создающего поле, до данной точки.

Напряженность поля точечного заряда в среде вычисляется по формуле:

где ​\( \varepsilon \)​ – диэлектрическая проницаемость среды.

Важно!
Напряженность электрического поля не зависит от величины пробного заряда, она определяется величиной заряда, создающего поле. Направление вектора напряженности в данной точке совпадает с направлением силы, с которой поле действует на положительный пробный заряд, помещенный в эту точку

Направление вектора напряженности в данной точке совпадает с направлением силы, с которой поле действует на положительный пробный заряд, помещенный в эту точку.

Линией напряженности электрического поля называется линия, касательная к которой в каждой точке направлена вдоль вектора напряженности ​\( \vec{E} \)​.

Линии напряженности электростатического поля начинаются на положительных электрических зарядах и заканчиваются на отрицательных электрических зарядах или уходят в бесконечность от положительного заряда и приходят из бесконечности к отрицательному заряду.

Распределение линий напряженности вокруг положительного и отрицательного точечных зарядов показано на рисунке.

Определяя направление вектора ​\( \vec{E} \)​ в различных точках пространства, можно представить картину распределения линий напряженности электрического поля.

Поле, в котором напряженность одинакова по модулю и направлению в любой точке, называется однородным электрическим полем. Однородным можно считать электрическое поле между двумя разноименно заряженными металлическими пластинами. Линии напряженности в однородном электрическом поле параллельны друг другу.

Закон Кулона. Принцип суперпозиции

Взаимодействие неподвижных электрических зарядов изучает раздел физики названный электростатикой, в основе которой фактически лежит закон Кулона, который был выведен на основе многочисленных опытов. Данный закон, также как и единица электрического заряда были названы в честь французского физика Шарля Кулона.

Кулон проводя свои опыты установил, что сила взаимодействия между двумя небольшими электрическим зарядами подчиняется следующим правилам:

  • сила пропорциональна величине каждого заряда;
  • сила обратно пропорциональна квадрату расстояний между ними;
  • направление действия силы направленно вдоль прямой соединяющей заряды;
  • сила представляет собой притяжение, если тела заряжены противоположно, и отталкивание в случае одноимённых зарядов.

Таким образом, закон Кулона выражается следующей формулой

где q1, q2 – величина электрических зарядов,

r – расстояние между двумя зарядами,

k – коэффициент пропорциональности, равный k = 1/(4πε0) = 9 * 109 Кл2/(Н*м2), где ε0 – электрическая постоянная, ε0 = 8,85 * 10-12 Кл2/(Н*м2).

Замечу, что ранее электрическая постоянная ε0 называлась диэлектрической постоянной или диэлектрической проницаемостью вакуума.

Рисунок иллюстрирующий закон Кулона.

Закон Кулона проявляется, нет только при взаимодействии двух зарядов, но и что чаще встречается системы из нескольких зарядов. В этом случае закон Кулона дополняется ещё одним существенным фактором, который называется «принципом наложения» или принципом суперпозиции.

В основе принципа суперпозиции лежит два правила:

  • воздействие на заряженную частицу нескольких сил есть векторная сумма воздействий этих сил;
  • любое сложное движение состоит из нескольких простых движений.

Принцип суперпозиции, на мой взгляд, проще всего изобразить графически

Изображение, поясняющее принцип суперпозиции.

На рисунке показаны три заряда: -q1, +q2, +q3. Для того чтобы вычислить силу Fобщ, которая действует на заряд -q1, необходимо вычислить по закону Кулона силы взаимодействия F1 и F2 между -q1, +q2 и -q1, +q3. Затем получившиеся силы сложить по правилу сложения векторов. В данном случае Fобщ вычисляется как диагональ параллелограмма по следующему выражению

где α – угол между векторами F1 и F2.

Природа явления

Глазами электрическое поле увидеть невозможно: его можно обнаружить по его действию на заряженные тела. При этом такое воздействие не требует прямого касания носителей потенциала, но имеет силовую природу. Так, наэлектризованные волосы будут тянуться к другим предметам.

Наблюдение за электрическими полями показывает, что они работают аналогично гравитационным. Описывается это законом Кулона, который в общем виде выглядит так:

F = q₁ q₂ / 4 π ε ε₀ r ²,

где q₁ и q₂ — величины зарядов в кулонах, ε — диэлектрическая проницаемость среды, ε₀ — электрическая постоянная, равная 8,854*10⁻¹² Ф/м, r — расстояние между зарядами в метрах, а F — сила, с которой заряды взаимодействуют, в ньютонах.

Таким образом, чем дальше от центра, тем меньше будет ощущаться воздействие поля.

Отобразить поле графически можно в виде силовых линий. Их расположение будет зависеть от геометрических характеристик носителя. Различают два вида полей:

  1. Однородное, когда силовые линии расположены параллельно друг другу. Идеальный случай — это бесконечные параллельные заряженные пластины.
  2. Неоднородное, частный случай которого — поле вокруг точечного или сферического заряда; его силовые линии расходятся радиально от центра, если он положительный, и к центру, если отрицательный.

Таковы основные свойства электрического поля. Чтобы ознакомиться с его характеристиками, стоит рассмотреть простейший вариант — электростатическое, которое формируется постоянными и неподвижными зарядами. Для удобства они будут точечными, чтобы их контуры не усложняли расчеты. Пробный заряд, который тоже будет фигурировать в дальнейшем, тоже будет точечным и бесконечно малым.

https://youtube.com/watch?v=kD-6e7fgvmY

Виды

Различают несколько основных видов электрополей. Отличие зависит от того, где оно существует. Следует рассмотреть несколько примеров возникающих сил в различных ситуациях:

  • Когда заряженные электрочастицы неподвижны. Это называется статическим ЭП;
  • Когда заряженные электрочастицы находятся в движении по проводнику. Это называется магнитным полем, которое не следует отождествлять с электрическим;
  • Стационарное ЭП возникает вокруг неподвижных проводников с неизменяющимся током.

В радиоволнах есть ЭП и МП. Они расположены в пространстве перпендикулярно друг другу. Это происходит, потому что любое изменение магнитного поля порождает возникновения электрополя с замкнутыми силовыми линиями.

Вихревые электромагнитные волны

Понравилась статья? Поделиться с друзьями:
Карта знаний
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: