Сферы применения
Стандартные характеристики ЭП обязательно включают в себя два свойства, которые активно применяются человечеством. Они могут образовывать универсальные ионы, а погруженные в определённую жидкость электроды позволяют без каких-либо усилий разделять их по функциям. Эксперты доказали, что универсальной и доступность электрических полей активно используется в различных отраслях:
- Очистка. В этой отрасли активно используется система качественного разделения разных жидкостей. Эта функция высоко ценится в очистных сооружениях. Ведь та вода, в которой содержится большое количество различного мусора, очень вредна для человека. При этом с такой жидкостью очень сложно что-то сделать, так как далеко не все фильтры могут справиться с проблемой. Именно в такой ситуации на помощь приходят ЭП. Они разделяют воду, за счёт чего отделяются загрязнения. Благодаря этому можно пользоваться быстрым и доступным способом очистки.
- Медицина. Квалифицированные доктора практически ежедневно используют систему воздействия на поражённые ткани пациента направленными ионами. За счёт этого улучшается регенерация органа, убиваются микробы и очищается рана. К тому же уникальные характеристики и свойства ЭП позволяют им работать с большей частотой. Такой эффект широко востребован в медицине, так как за короткий промежуток времени можно повысить температуру некоторых отдельных частей тела, за счет чего восстанавливается кровоток, а также улучшается общее самочувствие пациента.
- Химия. Без электрических полей просто невозможна нормальная работа некоторых отраслей промышленности, где нужно разделять разные жидкости. Такая наука активно используется в стандартных лабораторных условиях, но чаще всего её можно встретить в сфере массовой добычи нефти. Большой спрос спровоцирован тем, что природный материал часто содержит загрязняющие частицы, избавиться от которых традиционным способом весьма проблематично. Более экономичным является применение ЭП. Они позволяют быстро разделить нефть, убрав весь ненужный мусор, облегчив дальнейшую обработку.
Конечно, существует множество других вариантов применения формулы напряжённости электрического поля.
Предыдущая
РазноеЧто такое однолинейная схема электроснабжения и какие требования для её проектирования?
Следующая
РазноеОтносительная диэлектрическая проницаемость
Напряженность поля точечного заряда
Наиболее просто выглядит поле точечного заряда. Поскольку закон Кулона описывает взаимодействие между двумя точечными зарядами, то его можно непосредственно подставить в выражение для напряженности. В результате, мы получим формулу напряженности электрического поля точечного заряда:
$$E={F \over q}=k{q\over r^2}$$
Вектор напряженности лежит на линии, соединяющей точечный заряд с точкой, в которой находится напряженность. При этом вектор направлен в сторону заряда, если он отрицателен, и в противоположную, если он положителен.
Построив много таких векторов, можно получить картину линий напряженности поля точечного заряда. Линии будут начинаться на положительном заряде и радиальными лучами уходить в бесконечность. Если заряд отрицателен, то линии будут приходить в заряд радиальными лучами из бесконечности.
Чем ближе к заряду, тем линии будут располагаться гуще. Это иллюстрирует тот факт, что чем ближе к заряду, тем напряженность выше.
Рис. 3. Линии напряженности точечного заряда.
Что мы узнали?
Напряженность электрического поля — это отношение силы, действующей на пробный заряд, помещенный в поле, к величине этого пробного заряда. Поле можно изобразить в виде множества векторов напряженности, которые сливаются в линии. Линии напряженности поля точечного заряда являются радиальными лучами, уходящими в бесконечность.
-
/5
Вопрос 1 из 5
В чем состоит проявление электрического поля?
- В силовом взаимодействии зарядов
- В нагревании электрических зарядов
- В земном притяжении
- В изменении давления с высотой
Электризация тел
Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.
Способы электризации:
- трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
- через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
- при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
- при ударе;
- под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.
Расчет показателей
Напряженность поля, которое возникает под действием системы зарядов в искомой точке исследуемой области, равняется векторному результату аналогичных показателей всех полей, создаваемых отдельными потенциалами.
Формула напряженности электрического поля выглядит как Е= F / q, где параметры обозначаются буквами:
- Е — напряженность поля.
- F — сила, которая влияет на заряд, находящийся в определенной точке.
- Q — потенциал отдельной частицы, измеряется в кулонах.
Это свойство означает, что действие поля происходит по принципу суперпозиции, который гласит:
- результат влияния на отдельную микрочастицу нескольких наружных сил равняется векторной сумме обособленных влияний;
- каждое сложное передвижение раскладывается на несколько простых.
Иногда принцип принимает другие формулировки, которые по смыслу представляют собой эквивалентную теорию. В соответствии с ней, для нахождения энергии взаимного смещения в системе множества частиц берется сумма активности парных сочетаний между всеми реальными парами зарядов. Уравнения, которые участвуют в описании поведения системы, являются линейными формулами по количеству микрочастиц.
Электризация тел
Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.
Способы электризации:
- трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
- через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
- при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
- при ударе;
- под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.
Понятие электрического поля.
Теперь несколько замечаний об электрическом поле. На вопрос о том, что такое
электрическое поле, реально ли оно или это некий числовой коэффициент, ответить
очень трудно. “Есть вещи, которые вы спокойно можете объяснить два раза, не
рискуя, что кто-нибудь поймет, о чем вы говорите”, — считала Сова в сказке о
Винни-Пухе. К понятию поля мы будем возвращаться неоднократно. Пока речь идет
об электростатическом поле. А ведь есть еще магнитное и электрическое вихревое,
и даже электромагнитное.
Понятие “электрическое поле” имеет смысл. Оно сообщает пространству локальное
свойство, а именно: если нам известно значение поля, то мы знаем без дальнейших
рассуждений, что случится с любыми зарядами в этой точке, и для этого нам совсем
не нужно знать, как это поле было создано. Напряженность — это количественная
характеристика поля.
Потенциал электрического поля. Разность потенциалов
Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.
Обозначение – \( \varphi \), единица измерения в СИ – вольт (В).
Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.
Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:
Обозначение – \( \Delta\varphi \), единица измерения в СИ – вольт (В).
Иногда разность потенциалов обозначают буквой \( U \) и называют напряжением.
Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:
Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки
В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность
В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.
Потенциал поля точечного заряда \( q \) в точке, удаленной от него на расстояние \( r \), вычисляется по формуле:
Для наглядного представления электрического поля используют эквипотенциальные поверхности.
Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (\( r =R \), где \( R \) – радиус шара). Напряженность поля внутри шара равна нулю
Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.
Свойства эквипотенциальных поверхностей
- Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
- Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.
В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.
Разность потенциалов и напряженность связаны формулой:
Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:
Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.
Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил
Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.
Алгоритм решения таких задач:
- установить характер и особенности электростатических взаимодействий объектов системы;
- ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
- записать законы сохранения и движения для объектов;
- выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
- составить систему уравнений и решить ее относительно искомой величины;
- проверить решение.
Напряженность поля точечного заряда
У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.
Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.
Закон Кулона
Предположим, в вакууме есть два точечных заряда, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на них действуют силы, направленные вдоль соединяющей их прямой.
Закон Кулона Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними. |
Силу электрического поля в конкретной точке можно найти по формуле: где q1 и q2 — модули точечных зарядов, r — расстояние между ними.
В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.
Важно!
Сила взаимодействия двух точечных зарядов остается прежней при появлении сколь угодно большого количества других зарядов в данном поле.
Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:
Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.
Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.
Электрический заряд
Впервые термин «электрический» и «электризация», как производные от латинского слова «electri» – янтарь, были введены в 1600 г. английским учёным У. Гильбертом для объяснения явлений, которые возникают при натирании янтаря мехом или стекла кожей. Таким образом, тела, которые обладают электрическими свойствами стали называть электрически заряженными, то есть им был передан электрический заряд.
Из выше сказанного следует, что электрический заряд – это количественная характеристика, показывающая степень возможного участия тела в электромагнитном взаимодействии. Заряд обозначается q или Q и имеет разрядность Кулон (Кл)
В результате многочисленных опытов были выведены основные свойства электрических зарядов:
- существуют заряды двух типов, которые условно названы положительным и отрицательным;
- электрические заряды могут передаваться от одного тела к другому;
- одноимённые электрические заряды отталкиваются друг от друга, а разноимённые – притягиваются друг к другу.
Взаимодействие зарядов.
Кроме того был установлен закон сохранения заряда: алгебраическая сумма электрических зарядов в замкнутой (изолированной) системе остаётся постоянной
В 1749 г. американский изобретатель Бенджамин Франклин выдвигает теорию электрических явлений, согласно которой электричество есть заряженная жидкость, недостаток которой он определил как отрицательное электричество, а избыток – положительное электричество. Так возник знаменитый парадокс электротехники: согласно теории Б.Франклина электричество течет от положительного к отрицательному полюсу.
Согласно современной теории строения веществ, все вещества состоят из молекул и атомов, которые в свою очередь состоят из ядра атома и вращающихся вокруг него электронов «e». Ядро является неоднородным и состоит в свою очередь из протонов «р» и нейтронов «n». Причем электроны являются отрицательно заряженными частицами, а протоны положительно заряженными. Так как расстояние между электронами и ядром атома значительно превышают размеры самих частиц, то электроны могут, отщепляются от атома, тем самым обуславливается перемещение электрических зарядов между телами.
Структура атома (литий).
Кроме вышеописанных свойств электрический заряд обладает свойством деления, но существует величина минимально возможного неделимого заряда, равного по абсолютной величине заряду электрона (1,6*10-19 Кл), называемого также элементарным зарядом. В настоящее время доказано существование частиц с электрическим зарядом меньше элементарного, которые называются кварки, но время их существования незначительно и в свободном состоянии они не обнаружены.
Что такое электрическое поле
Долгое время ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».
В современной физике электрическое поле — это некая материя, которая возникает вокруг заряженных тел и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим. |
Тела, имеющие одноименные заряды, будут отталкиваться, а разноименные — притягиваться.
Основные понятия в классической электродинамике
Напряженность электрического поля в физике — это векторная (имеющая направление) физическая величина, характеризующая электрическое поле в данной точке. Напряженность является силовой характеристикой электрического поля, направлена в ту же сторону, что и сила электростатического взаимодействия. Напряженность показывает, с какой силой действует поле на помещенный в него заряд.
Свойство: напряженность поля в данной точке не зависит от величины пробного заряда. Во всех случаях отношение силы к величине заряда — постоянная величина.
Единицей измерения напряженности в системе СИ является ньютон, деленный на кулон:
Формулы вычисления напряженности:
Напряженность равна отношению силы, действующей на неподвижный точечный заряд, помещенный в данную точку, к величине этого заряда.
Напряженность электрического поля уединенного точечного заряда либо заряженной сферы:
Из определения напряженности следует, что для случая взаимодействия двух точечных зарядов, зная силу их взаимодействия, можно получить величину напряженности электрического поля, которое создается зарядом q0 в точке на расстоянии r от него до точки, в которой исследуется электрическое поле:
Из формулы следует, что напряженность поля точечного заряда обратно пропорциональна квадрату расстояния от данного заряда. Например, при увеличении расстояния в два раза, напряженность уменьшается в четыре раза.
Принцип суперпозиций
В большинстве реальных ситуаций, связанных с электрическими полями и силами, заряд распределен по пространству. Заряженные проводящие стержни имеют электрический заряд, распределенный по их поверхностям.
Поле распределенного заряда.
Представим, что распределение состоит из множества точечных зарядов q1, q2… В любой заданной точке P каждый из точечных зарядов распределения создает свое собственное электрическое поле E, поэтому пробный точечный заряд q, помещенный в точку P, испытывает силу F1=q*E1 со стороны заряда q1, силу F2=q*E2 стороны заряда q2 и так далее.
Исходя из принципа суперпозиции электрических сил, полная сила F, которую распределение заряда оказывает на q, является векторной суммой этих сил:
F=F1+F2+…=q1E1+q2E2+…
Совместное действие всех зарядов в распределении описывается полным электрическим полем E в точке P. Это поле равняется:
E=F/q=E1+E2+E3+…
Вывод:
Принцип суперпозиций электрических полей: суммарное электрическое поле в точке P является векторной суммой электрических полей, созданных каждым точечным зарядом, содержащимся в данном распределении заряда.
Пример расчета
Решение:
Fk — сила Кулона, действующая на заряд со стороны электрического поля, равная Fk=qE.
Так как m*g — сила тяжести, по второму закону Ньютона, ускорение будет сонаправлено результирующей силе. А так как начальная скорость равна нулю, тело будет разгоняться вдоль вектора ускорения.
Тогда:
Ответ: 1.
Напряженность магнитного электрического поля
Замечание 1
Напряженность магнитного электрического поля определяет сила, воздействующая на пробный магнит, помещенный в поле.
Поскольку магнитные полюсы не существуют по отдельности, мы наблюдаем воздействие на южный и северный полюсы пробного магнита противоположно направленных сил. При этом возникает момент пары сил, характеризующий величину напряженности поля в заданном месте.
В магнитном поле у цилиндрической катушки он будет прямо пропорциональным числу витков и силе тока, и при этом и обратно пропорциональным длине катушки.
Направление у вектора напряженности магнитного поля в каждой точке будет совпадающим с направлением силовых линий. Внутри самой катушки (магнита) он направляется от южного полюса к северному, а вне ее — от северного к южному.
Краткое описание
Увидеть невооружённым взглядом электрическое поле (ЭП) невозможно: его можно обнаружить в процессе воздействия на заряженные тела. Удивительно, но прямого касания может и не быть, так как должна присутствовать силовая природа. Ведь всем известно, что наэлектризованные волосы будут притягиваться к другим предметам. Многочисленные исследования смогли доказать, что аналогичный принцип действия имеют гравитационные поля. Этот феномен был впервые описан в законе Кулона.
Расшифровка:
- d₁ и d₂ — параметры разрядов в кулонах.
- q ₀ — этим символом может обозначаться только электрическая постоянная.
- q — показатель диэлектрической проницаемости.
- F — сила взаимодействия разных зарядов (может измеряться в ньютонах).
- r — расстояние между двумя рассматриваемыми объектами в метрах.
Благодаря формуле напряжённости электростатического поля можно определить тот факт, что чем дальше находиться от центра, тем меньше будет ощущаться его воздействие. Графически его можно изобразить в виде силовых линий. Итоговое их расположение напрямую зависит от геометрических параметров носителя.
https://youtube.com/watch?v=kD-6e7fgvmY
На сегодняшний день специалисты научились выделять несколько разновидностей полей:
- Специфические неоднородное. Рассматривается поле вокруг шарообразного или же точечного заряда. Все силовые линии расходятся только в том случае, если этот параметр имеет положительное значение.
- Однородное поле. Все силовые линии располагаются исключительно параллельно друг другу. Эксперты утверждают, что идеальным является тот вариант, когда заряженные пластины бесконечны.
Закон Кулона. Принцип суперпозиции
Взаимодействие неподвижных электрических зарядов изучает раздел физики названный электростатикой, в основе которой фактически лежит закон Кулона, который был выведен на основе многочисленных опытов. Данный закон, также как и единица электрического заряда были названы в честь французского физика Шарля Кулона.
Кулон проводя свои опыты установил, что сила взаимодействия между двумя небольшими электрическим зарядами подчиняется следующим правилам:
- сила пропорциональна величине каждого заряда;
- сила обратно пропорциональна квадрату расстояний между ними;
- направление действия силы направленно вдоль прямой соединяющей заряды;
- сила представляет собой притяжение, если тела заряжены противоположно, и отталкивание в случае одноимённых зарядов.
Таким образом, закон Кулона выражается следующей формулой
где q1, q2 – величина электрических зарядов,
r – расстояние между двумя зарядами,
k – коэффициент пропорциональности, равный k = 1/(4πε0) = 9 * 109 Кл2/(Н*м2), где ε0 – электрическая постоянная, ε0 = 8,85 * 10-12 Кл2/(Н*м2).
Замечу, что ранее электрическая постоянная ε0 называлась диэлектрической постоянной или диэлектрической проницаемостью вакуума.
Рисунок иллюстрирующий закон Кулона.
Закон Кулона проявляется, нет только при взаимодействии двух зарядов, но и что чаще встречается системы из нескольких зарядов. В этом случае закон Кулона дополняется ещё одним существенным фактором, который называется «принципом наложения» или принципом суперпозиции.
В основе принципа суперпозиции лежит два правила:
- воздействие на заряженную частицу нескольких сил есть векторная сумма воздействий этих сил;
- любое сложное движение состоит из нескольких простых движений.
Принцип суперпозиции, на мой взгляд, проще всего изобразить графически
Изображение, поясняющее принцип суперпозиции.
На рисунке показаны три заряда: -q1, +q2, +q3. Для того чтобы вычислить силу Fобщ, которая действует на заряд -q1, необходимо вычислить по закону Кулона силы взаимодействия F1 и F2 между -q1, +q2 и -q1, +q3. Затем получившиеся силы сложить по правилу сложения векторов. В данном случае Fобщ вычисляется как диагональ параллелограмма по следующему выражению
где α – угол между векторами F1 и F2.
Линии напряженности
Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.
Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля. |
При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.
Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.
Напряжённость поля равномерно заряженной полусферы.
В качестве примера вычислим напряжённость поля в центре полусферы
радиуса R, если по поверхности этой сферы равномерно распределён заряд q.
Будем исходить из формулы (4.6). Учитывая, что заданное распределение
заряда обладает сферической симметрией, вычисление удобно провести
в сферической системе координат, выбрав её начало в центре сферы. При этом
поверхностная
плотность заряда, а элемент площади
поверхности сферы, и, следовательно, формула (4.6) записывается в данном случае
в виде:
(4.11)
Разложим
по ортам декартовой системы координат, чтобы показать явную зависимость его от
j и q,
, и подставим в
(4.11):
(4.12)
Учитывая, что уже не зависят
от j и q,
можно провести
вычисление интеграла в (4.12), представляя его в виде суммы трёх интегралов.
При этом, как легко видеть, при выполнении сначала интегрирования по
j, интегралы от
первого и второго слагаемых обращаются в ноль, и остаётся только интеграл от
третьего слагаемого, который легко вычисляется:
Применение электрического поля в электротехнике
Сфера применения электрического поля достаточно широка, основными из направлений являются:
- Медицина.
- Химия.
- Электротехника.
Влияние электрического поля на некоторые участки человеческого тела способствуют повышению его температуры. Данное явление нашло свое применение в медицине. Специальные аппараты оказывают воздействие электрическим полем на участки тела человека, что в свою очередь становится причиной улучшения кровообращения и ускорения заживления тканей. В химической промышленности свойства электрического поля используются для разделения жидкостей. В частности, при воздействии электрического поля нефть очищается от загрязняющих компонентов. Также оно может быть использовано для обработки в процессе фильтрации воды, что значительно дешевле, чем применение сменных картриджей.
Благодаря электрическому полю был разработан способ беспроводной передачи электричества от источника потребителю. В настоящее время уже есть технология, позволяющая заряжать мобильные телефоны, без использования гибкого кабеля, который вставляется в специальный разъем телефона. Однако, пока он не позволяет передавать электроэнергию на значительное расстояние.
При выполнении разнообразных электромонтажных работ используется индикаторная светодиодная отвертка, функционирующая на основе схемы полевого транзистора. Одна из ее функции заключается в реагировании на электрическое поле. При приближении пробника к фазному проводу индикатор начинает светиться, а фактического касания с токопроводящей жилой не происходит, она способна реагировать на поле даже сквозь изоляцию. Это позволяет обнаруживать токопроводящие провода в стенах и определять точки разрыва.
Еще одним применением электрического поля в электротехнике является разработка МДП-транзисторов. Принцип их работы основывается на изменении проводимости благодаря воздействию электрического поля на полупроводник. Во всех современных электронных приборах имеется составляющая, которая функционирует благодаря электрическому полю — конденсатор. В данном устройстве заряды удерживаются на обкладках, разделенных диэлектриком, благодаря электрическому полю.
В некоторых случаях свойства электрического поля бывает необходимо нейтрализовать, так как оно способно электризовать предметы, оказавшиеся в зоне его действия, тем самым создавая препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя полевых транзисторов и интегральных микросхем.
Отдаленными перспективами использования электрического поля являются создание коммуникаций быстрее скорости света, перемещение между червоточинами, а также телепортация физических объектов