Разновидности преобразователей термоэлектрического типа
Виды термопар чрезвычайно обширные. Есть два основных фактора разделения: по разновидности сплавов и по варианту спайки. А также отдельным типом являются многоточечные ТП.
Тип электропар в зависимости от сплавов проводников
Термопара создает ЭДС, принцип всегда аналогичный, но сплавы нагреваются по-разному, поэтому рабочие диапазоны, скорость срабатывания, погрешности могут колебаться.
Разные сочетания металлов обладают своими параметрами, определяющими выходной импульс напряжения, но главное — температурный диапазон, в котором допускается использовать ту или иную разновидность сенсора
При росте амплитуды выходного напряжения улучшается разрешение измерений. Растет повторяемость, соответственно, и точность.
Есть разные соотношения разрешения и диапазона t° у конкретных типов ТП, что делает их подходящими для определенных условий.
Есть 9 типов термопар по составу сплавов проводников:
Разновидности обозначаются буквами. (J, K, T, E, N, R, S, B, C).
Для нас важна термопара типа К (другое обозначение — ТХА): она наиболее распространенная, подходит для применения в бытовых, других приборах и для задач, не имеющих каких-либо особых требований.
Традиционно ТХА рекомендована всегда, если только нет обоснований для использования иных видов. Ниже приведем описание термопары типа К из узкопрофилированного сайта по электронике:
Как подключаются термоэлектрические преобразователи
На каждой новой отметке соединения разносплавных жил образуется холодный спай, а это, как мы уж описали, влияет на корректность замеров. Подключение желательно делать проводами по составу аналогичными с электродами.
Как правило, производители изначально комплектуют сенсоры такими компенсационными кабелями, их также можно докупить в спецмагазинах. Но, как мы отметили выше, это не актуально, если есть нормирующий преобразователь, схема корректировки, базирующаяся на термисторе. Провода ТП просто втыкаются в гнезда таких узлов согласно полярности.
Измерительные системы желательно размещать ближе при подключении ТП, чтобы длину кабеля сократить до самого возможного минимума. На любом проводе есть риск возникновения помех, а чем он длиннее, тем значительнее отклонения. Если радиопомехи можно устранить экранированием, наводки нивелировать сложнее.
Схема подключения термопары может включать терморезистор компенсации между контактами приемника и точкой холодного сегмента. Внешняя t° на эти элементы влияет аналогично, поэтому такая деталь будет исправлять погрешности:
Подключив ТП к измерителю, надо выполнить градуировку, в сети есть специальные таблицы.
Обозначение термопар на схемах:
Обозначения из ГОСТов:
Пример:
Принцип действия
Если кратко, то ТП состоит из проводков из 2 разных сплавов со своими электрохарактеристиками при термических влияниях: создается определенная разность потенциалов и слабый ток, что фиксирует приемник таких показаний.
Но если углубиться в изучение термопары, то надо сказать о значительных особых нюансах как она работает.
Принцип работы термопары использует термоэлектрическое реагирование, впервые описанной ученым Т. Зеебеком. Соединенные проводники имеют контактную разность потенциалов. Конструктивно сенсор состоит из 2 жил из разных сплавов.
Концы образуют головку — контакт, так называемый горячий спай (красный на схеме ниже), созданный скручиванием, а чаще сваркой (швом, встык). Свободные окончания идут на обрабатывающие данные, управляющие узлы обслуживаемого оснащения, они замкнутые компенсационными проводками на контакты таких приборов, а в точках соединения с ТП находится холодный спай (синий на рис. ниже).
Электроды из разных металлов, условно А и B, на чертеже выше тоже изображены разными оттенками. Они защищены герметичной капсулой (может быть с инертным газом, жидкостью), керамическими цилиндриками (на изобр. ниже).
Объяснение из Википедии:
Действие основывается на эффекте с термоэлектрическими свойствами (назван на честь ученого Т. Зеебека). Если цепь замыкается, например, милливольтметром, на точках спаек появляется термо-ЭДС (электродвижущая сила). Если применить электроды с одних и тех же сплавов, то они бы нагревались одинаково (равнозначно), ЭДС взаимно бы компенсировалась, ток бы не возник.
Термопара, как она работает, что это такое простым языком: разные же проводники нагреваются по-разному, их спаи обладают неидентичными температурами, поэтому между ними возникает разность потенциалов, инициирующая термо ЭДС, которая и поддерживает слабый ток на такой цепи. Величина пропорциональная разности t° спаев
Надо акцентировать, что принимать во внимание надо именно ее, а не другие показатели
Еще одно простое объяснение, как работает термопара: если соединить 2 разных металлических проводника, создав замкнутую электроцепь, и нагреть точку данного соединения, то появится электродвижущая сила (термоЭДС) и малый электроток. ТП передает эти данные на микросхему обслуживаемого или измерительного прибора, который и обрабатывает их, вычисляя t°.
Отличия термопар от терморезисторов (NTC PTC)
Отличия термоэлектрических преобразователей от термисторов (датчиков сопротивления):
- принцип работы. На термопаре возникает малый ток, меняющийся при разном нагреве ее головки, а терморезистор (полупроводниковый) реагирует на такие процессы изменением своего сопротивления;
- конструктивные. Конструкция термопары: два спаянных проводника (ток идет от них) из разных сплавов в защитном кожухе и с компенсационными проводами, термистор — цельный кусок полупроводника с жилами (ток идет на него), сопротивление которого чувствительное к температуре.
Термопара имеет такие преимущества:
- диапазон раб. t° намного выше: типичный достигает +600…+800° C, у термисторов стандартный максимальный плюсовой предел около +200…+600° C. Есть термопары из особых сплавов, которые работают при +2500° C, что для них нельзя назвать чем-то выдающимся, это, в общем, обычные параметры. Но и у термических датчиков есть специальные семейства высокотемпературных моделей. Но это более особенные приборы, и все же их диапазон меньший;
- термисторы более точные, но с некоторыми оговорками. При высоких температурах, погрешности, а также деградация, раскалибровка у них может быть выше, чем у ТП. То есть при особо значительных температурах термопары могут быть точнее. Данный минус для них также нивелируется, если есть преобразователь, исчисляющий погрешности;
- часто требуется нормирующий усилитель, который нужен для термопары, чтобы повысить чувствительность, чтобы ее сигнал был сильнее для лучшей работы приемника, обрабатывающего информацию, чтобы он «увидел» ее;
- термистор дешевый из-за того что не требует указанных дополнительных узлов. Для ТП такие устройства зачастую требуются, поэтому в итоге стоимость их использования выше;
- стойкость к механическим влияниям, вибрациям у термопар лучше, они имеют надежные защитные кожухи;
- скорость реакции у ТП выше, чем у термисторов;
- при работе с повышенными температурами термисторы больше подвержены износу и раскалибровке. Но этот минус относительный — такой сенсор часто просто выбрасывают и покупают новый, так как изделие дешевое;
- термисторы со временем деградируют быстрее. Обычно производители дают гарантию всего 1000 часов для таких детекторов. Термопары более живучие.
Итак, измерение температуры терморезистором и термопарой отличается основательно, хоть и в обоих случаях базируется на электропараметрах: вторая создает и меняет ЭДС, первый — свое сопротивление.
Есть правило: если t° выше +300° C, то следует применять термопару. На более простых и дешевых приборах чаще встречается терморезисторы. На дорогом и сложном оборудовании — термопары, они же более распространенные при работе с высокими температурами. У термисторов в таких условиях погрешности могут быть такие же, как у ТП, но в типичных диапазонах (−50…+300° C) они имеют превосходство по точности.
Если говорить о специальных узконаправленных сферах — лаборатории, специсследования, промышленность — то там чаще используют ТП.
Подытожим:
- преимущества термопары: диапазон рабочих температур намного шире, реакция быстрее, срок эксплуатации намного превышает таковой у термисторов, ТП меньше подвержены раскалибровке, деградации, механическим повреждениям. При диапазоне t° от +300° C именно термопары часто незаменимые;
- минусы: особенности применения ТП повышают затраты (частично нивелируется живучестью), а также принято считать, что точность термопар немного хуже, чем у терморезисторов.
Отдельно выделим безусловный плюс: только термопары используются как измерители температуры исследуемых объектов (радиодеталей и пр.) вместе с мультиметром. Также надо сказать, что неподходящие диапазоны t° всегда повышают погрешности и вероятность отказа, но ТП стойче к таким условиям.
Особенности, нюансы по точности
Напряжение на холодных кончиках пропорционально зависимое от t° в районе горячей спайки. В определенном температурном диапазоне наблюдается линейное термоэлектрическое свойство, показывающее собой зависимость напряжения от уровня разности t° между точками теплым и холодным элементом ТП. Линейность условная — о ней можно говорить, лишь когда t° на последнем постоянная. Данный нюанс надо учитывать, если делается градуировка: при изменении нагрева на холодных окончаниях есть вероятность значительной погрешности
Когда требуется высокая точность замеров, холодные концы помещают в специальные капсулы, где стабильность одного выбранного уровня температуры поддерживается специальными электронными приборами, обрабатывающими показатели термометра сопротивления. При таком подходе добиваются точности до ±0.01. Но это затребовано лишь для немногих технологических процессов. В большинстве случаев, например, при работе термопары в холодильниках, водонагревателях и прочих бытовых приборах требования менее жесткие, допускают отклонения на порядок ниже.
Что такое термопара, ее устройство
ТП регламентируются ГОСТами 6616, Р 8.585 и МЭК 62460, 60584. Пункт 2.2 последнего дает определение сенсора: пара разносплавных проводников с соединением (спайкой) на одном конце для инициирования термоэлектрического эффекта для замеров t° этим сегментом. ТП измеряет точкой соединения (головкой) своих электродов, так называемой «горячей спайкой».
Надо понимать, что устройство термопары может представлять собой неприглядные отрезки спаянных на одном их окончании тоненьких проводков, но, несмотря на это, сенсор чрезвычайно эффективный. Часто содержит драгметаллы.
Устройство:
- два проводника, с одного конца спаянные, реже — скрученные. Это горячий спай, чувствительный сегмент, проводящий замеры;
- другие концы — место, где нет нагрева, соединения с удлиняющими проводками, холодный спай. Они подсоединяются на приемник показателей.
Создается замкнутая цепь, если в ее разрыв подсоединить гальванометр, микровольтметр, мультиметр, то они покажут возникшую там термоЭДС в несколько мили-, микровольт. Значение зависит от степени нагрева на соединении проволоки и от показателя температуры, на сегменте, где такового нет.
То есть величина ЭДС зависит от разности t° между спаями — холодным и горячим и от термоэлектросвойств сплавов самих проводников.
Если горячую точку соединения подогреть, то между их несоединенными (холодными) концами появится разность потенциалов.
Далее, преобразователь отдельный или на блоке контроля обслуживаемого приборе исчисляет температуру, так как сила ЭДС и она взаимозависимые, затем переводит полученные данные в цифры и/или в команды для управления.
Быстродействие измерения
Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.
Факторы, увеличивающие быстродействие:
- Правильная установка и расчет длины первичного преобразователя;
- При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
- Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
- Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
- Быстро движущаяся среда или среда с большей плотностью (жидкость).
Преимущества и недостатки использования термопар
Достоинствами использования данного устройства можно назвать:
- Большой температурный диапазон измерений;
- Высокая точность;
- Простота и надежность.
К недостаткам следует отнести:
- Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
- Структурные изменения металлов при изготовлении прибора;
- Зависимость от состава атмосферы, затраты на герметизацию;
- Погрешность измерений из-за воздействия электромагнитных волн.
Какие провода бывают — все разновидности кабелей и проводов
Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды
Как выбрать термоусадочную трубку для проводов?
Что такое анод и катод?
Что такое тензодатчик, типы тензометрических датчиков, схема подключения и их применение
В чём отличие проводников от диэлектриков, их свойства и сфера применения
Где используются термопары
ТП чаще, чем другие датчики применяют для оборудования, связанного с высокими плюсовыми температурами: топливные котлы и плиты, иное оснащение с горелками, бойлеры, паяльники, пирометры, печи, металлургия.
Термин «термоэлектрический преобразователь» отображает природу сенсора — дифференциальный измеритель, который делает замеры, преобразовывая тепло в электричество.
Термопары — это простые и эффективные сенсоры для высокоточных термоэлектрических термометров, работающих в повышенных температурных рамках.
Яркий пример применения: в составах автоматики топливных котлов и отопления. Сработка оснащения инициируется электросигналом от сенсорного узла с ТП.
Термопары наряду с NTC и PTC термисторами — самые популярные измерители температуры для оборудования, последние имеют свои достоинства (считаются более точными в своих диапазонах), но не охватывают настолько широкие температурные рамки, как ТП.
Проверка, ремонт и замена термопары
Рассмотрим неисправности на примере термопары датчика газового котла, в таких приборах она также называется сенсором пламени. По ходу раскроем некоторые нюансы по эксплуатации термоэлектрических детекторов, как они устроены, из чего состоит такой прибор.
Признаки поломки:
- затухание фитиля, в момент, когда одновременно отпускают кнопку зажигания;
- огонек остается, но после розжига главной горелки подача топлива снова перекрывается, котел гаснет вообще.
Причины:
- электроды, горячий спай покрылись сажей, прогреваются не достаточно. Поэтому напряжение на цепи падает ниже критического минимума, нужного для сработки прибора;
- прогар защитной капсулы ТП;
- нарушены контакты на точке спаев, обрыв проволоки;
- отошли крепежные гайки;
- перекос рабочего стержня и, как следствие, плохой прогрев запальником;
- сломался датчик тяги или его электроцепь оборвана.
Починка, восстановление
Термопары чувствительные к любым повреждениям и загрязнениям: эти факторы могут уменьшить выдаваемое датчиком напряжение ниже критической границы. Характерная частая причина плохой работы — нагар, сажа на рабочем (нагреваемом) сегменте. Для восстановления достаточно произвести чистку мягкой щеткой, ваткой со спиртом
Важно не допустить царапин, механических повреждений. После очистки надо провести проверку мультиметром
Часто причиной неисправностей являются окислившиеся контакты, их можно зачистить мелкозернистой (нулевкой) наждачкой, но без чрезмерных усилий
Таким образом, если есть нагар, сажа, окисления, отошедшие или оборванные контакты, крепежи и подобное, то ТП возможно отремонтировать. Но если обнаружены глубокие черные вмятины, прогары (дыры), то такой элемент обычно не восстанавливается. Теоретически можно соорудить новый защитный кожух, попробовать наново спаять концы, если они разошлись, но нет гарантии, что такая починка будет качественная. А от неэффективной работы есть риск значительного ухудшения ресурса обслуживаемого прибора, вероятность аварийных ситуаций увеличивается. Почти всегда сенсоры с такими критическими перечисленными поломками заменяют на новые без раздумий.
Запасные элементы продаются в спецмагазинах, точках сервисного обслуживания. Подобрать не составит труда — достаточно выбрать аналогичный или подходящий по параметрам детектор для конкретной модели оборудования. Замена элементарная — отщелкнуть старую ТП и подключить (воткнуть) в посадочные места новую.
Сложность может быть лишь в том, что прибор придется разбирать, снимать крышки, узлы с горелками и так далее.
Термоэлектрические преобразователи
Введение
Современная термодинамика определяет
температуру как величину, выражающую состояние внутреннего движения равновесной
макроскопической системы и определяемую внутренней энергией и внешними
параметрами системы.
Непосредственно температуру измерить невозможно,
можно лишь судить о ней по изменению внешних параметров, вызванному нарушением
состояния равновесия благодаря теплообмену с другими телами.
Каждому методу определения температуры, в
основе которого лежит зависимость между каким-либо внешним параметром системы и
температурой, соответствует определенная последовательность значений параметра
для каждого размера температуры, называемая температурной шкалой. Наиболее
совершенной шкалой является термодинамическая температурная шкала (шкала
Кельвина).
Исходным эталоном температуры является
комплекс изготовленных в разных странах мира газовых термометров, по показаниям
которых определяются численные значения реперных точек по отношению к точке
кипения химически чистой воды при давлении 101325 Па, температура которой
принята равной
,00°С (373,15 К точно).
Весь температурный диапазон перекрывается
семью шкалами, для воспроизведения которых в зависимости от области шкалы
используются различные методы: от 1,5 до 4 К — измерение давления паров
гелия-4, от 4,2 до 13,8 К — германиевые терморезисторы, от 13,8 до 273,16 К и
от 273,16 до
,89 К — платиновые терморезисторы от
903,89 до 1337,58 К — термопары платинородий — платина, от 1337,58 до 2800 К —
температурные лампы и от
до 100 000 К — спектральные методы.
Огромный диапазон существующих температур
(теоретически максимально возможное значение температуры составляет 1012 К)
обусловил большое разнообразие методов их измерения.
Термоэлектрический метод измерения
температуры основан на использовании зависимости термоэлектродвижущей силы от
температуры
Нас будут интересовать контактные методы и
средства электроизмерения температур.
Тепловым называется преобразователь,
принцип действия которого основан на тепловых процессах и естественной входной
величиной которого является температура. К таким преобразователям относятся
термопары и терморезисторы, металлические и полупроводниковые. Основным
уравнением теплового преобразования является уравнение теплового баланса,
физический смысл которого заключается в том, что все тепло, поступающее к
преобразователю, идет на повышение его теплосодержания QТС и, следовательно,
если теплосодержание преобразователя остается неизменным (не меняется
температура и агрегатное состояние), то количество поступающего в единицу
времени тепла равно количеству отдаваемого тепла. Тепло, поступающее к
преобразователю, является суммой количества тепла Qэл, создаваемого в
результате выделения в нем электрической мощности, и количества тепла Qто,
поступающего в преобразователь или отдаваемого им в результате теплообмена с
окружающей средой.
Явление термоэлектричества было открыто в
1823 г. Зеебеком и заключается в следующем. Если составить цепь из двух
различных проводников (или полупроводников) А и В, соединив их между собой
концами (рис. 1.), причем температуру 1 одного места соединения сделать
отличной от температуры о другого, то в цепи появится э.д.с., называемая
термоэлектродвижущей силой (термо-э.д.с.) и представляющая собой разность
функций температур, мест соединения проводников.
Подобная цепь называется
термоэлектрическим преобразователем или иначе термопарой; проводники,
составляющие термопару, — термоэлектродами, а места их соединения — спаями.
Рис. 1. Конструкция термопары
При небольшом перепаде температур между
спаями термо-э.д.с. можно считать пропорциональной разности температур.
Устройство термопары
Принцип работы термопары. Эффект Зеебека
Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.
Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.
Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.
Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».
Компенсация температуры холодного спая (КХС)
Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.
КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).
Конструкция термопары
При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.
Особенности конструкции термопар:
1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).
2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.
3) Способ изоляции подбирается с учетом верхнего температурного предела.
- До 100-120°С – любая изоляция;
- До 1300°С – фарфоровые трубки или бусы;
- До 1950°С – трубки из Al2O3;
- Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.
4) Защитный чехол.
Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.
Удлиняющие (компенсационные) провода
Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».
Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.
ОВЕН ДТПХхх4 Преобразователи термоэлектрические на основе КТМС с кабельным выводом.
Пример обозначения при заказе: ОВЕН ДТПN444-09.100/5С.1
Это означает, что изготовлению и поставке подлежит термопара «нихросил-нисил» с диапазоном измерения температуры: -40…+1250 °С, с изолированным рабочим спаем, диаметром КТМС 4,5 мм, длиной монтажной части 100 мм, длиной силиконового кабельного вывода 5 м, классом допуска 1, конструктивное исполнение 444.
Пример обозначения при заказе: ОВЕН ДТПК264-07.100/5000/10С.1
Это означает, что изготовлению и поставке подлежит термоэлектрический преобразователь с чувствительным элементом КТМС «хромель-алюмель», материал арматуры 12Х18Н10Т, материал защитной оболочки КТМС – AISI321, c диапазоном измерения температуры: -40… +800°С, с изолированным рабочим спаем, диаметром КТМС 3 мм, длиной монтажной части L1=100 мм, длиной вывода КТМС L2=5000 мм, длиной силиконового кабельного вывода 10 м; конструктивное исполнение 264.