Активное и реактивное сопротивление, свойства и разновидности
Рассмотрим два вида этого сопротивления: емкостное и индуктивное.
Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.
Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.
Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.
Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.
Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока.
В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.
На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.
Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.
Но что такое реактивное сопротивление?
Реактивное сопротивление бывает двух видов в зависимости от используемого реактивного компонента. Сюда входит:
Индуктивное реактивное сопротивление
Оно встречается в цепях, где есть своего рода электромагниты, влияющие на магнитное поле электрической цепи. Еще их называют катушками индуктивности. Катушки индуктивности имеют низкое полное электрическое сопротивление на низких частотах и высокое полное электрическое сопротивление на высоких частотах.
Разные катушки индуктивности
Обратите внимание на общность. конструкции – медный провод намотан на магнит, образуя катушку
конструкции – медный провод намотан на магнит, образуя катушку.
Емкостное реактивное сопротивление
Оно встречается там, где электрическое поле между двумя проводящими поверхностями вызывает накопление заряда. Такие устройства еще называют конденсаторами. Конденсаторы имеют высокое полное электрическое сопротивления на низких частотах и низкое полное сопротивление на высоких частотах.
Конденсаторы встречаются всех форм и размеров.
Соберем электрическую цепь переменного тока из резисторов, катушек индуктивности и конденсаторов. Теперь вы сможете не только оказывать сопротивление электрическому току, но и накапливать и высвобождать энергию. Если резисторы сохраняют постоянное сопротивление вне зависимости от изменяющихся условий, то сопротивление катушек индуктивности и конденсаторов изменяется в зависимости от частоты проходящего через них электрического сигнала. Когда конденсаторы и катушки индуктивности вместе оказывают сопротивление и накапливают/высвобождают энергию, тогда и говорят о полном электрическом сопротивлении.
Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.
Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.
Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .
Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z
Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.
(7)
Приводя к общему знаменателю подкоренное выражение, получим:
(8)
(9)
Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.
Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.
Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:
(10)
Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.
В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).
Рисунок 6. Эквивалентная схема колебательного контура.
Формула полного сопротивления для этого случая будет:
(11)
Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:
(12)
В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие
(13)
При соблюдении этого условия полное сопротивление колебательного контура будет равно:
(14)
где L—индуктивность катушки в Гн;
С—емкость конденсатора в Ф;
R—активное сопротивление катушки в Ом.
В электрической цепи переменного тока существует два вида сопротивлений: активное и реактивное. Это является существенным отличием от цепей постоянного тока.
Катушка индуктивности в цепи переменного тока
Ну а теперь давайте возьмем катушку индуктивности вместо конденсатора:
Проводим все аналогичные операции, как и с конденсатором. Смотрим на осциллограммы в цепи с катушкой индуктивности:
Если помните, вот такую осциллограмму мы получили в схеме с конденсатором:
Видите разницу? На катушке индуктивности ток отстает от напряжения на 90 градусов, на П/2, или, как еще говорят, на четверть периода (весь период у нас 2П или 360 градусов).
Так-так-так…. Давайте соберемся с мыслями. То есть в цепи с переменным синусоидальным током, ток на конденсаторе опережает напряжение на 90 градусов, а на катушке индуктивности ток отстает от напряжения тоже на 90 градусов? Да, все верно.
Почему на катушке ток отстает от напряжения?
Не будем углубляться в различные физические процессы и формулы, просто сочтем за данность, что сила тока не может резко возрастать на катушке индуктивности. Для этого проведем простой опыт. Так же как и на конденсатор, мы резко подадим напряжение на катушку индуктивности, и посмотрим, что случилось с силой тока.
Как вы видите, при резкой подаче напряжения на катушку, сила тока не стремится также резко возрастать, а возрастает постепенно, если быть точнее, по экспоненте.
Давайте вспомним, как это было у конденсатора:
Все с точностью наоборот! Можно даже сказать, что катушка — это полная противоположность конденсатору
Ну и напоследок давайте еще побалуемся частотой:
240 Килогерц
34 Килогерца
17 Килогерц
10 Килогерц
Вывод?
С уменьшением частоты сила тока через катушку увеличивается.
Конструкция и разновидности
Все типы катушек индуктивности имеют одинаковую конструкцию, независимо от области их использования. Особенности, внесенные для получения индивидуальных параметров, влияют на тип детали.
- Соленоид. Компонент с увеличенной общей длиной обмоточного провода. Обмотка больше диаметра детали.
- Тороидальная. В такой катушке соленоид выполнен в форме «тора».
- Многослойный тип, имеет несколько рядов обмотки.
- Секционированная. Обмотка имеет несколько разделенных секций, иногда из провода разного сечения. Наиболее известной катушкой этого типа является трансформатор или дроссель.
- Универсальная, может совмещать сразу несколько вариантов обмотки.
Независимо от конструкции, все катушки работают по одному и тому же принципу.
Силовой треугольник индуктора переменного тока
Существует еще один тип конфигурации треугольника, который мы можем использовать для индуктивной цепи, и это «силовой треугольник». Мощность в индуктивной цепи называется реактивной мощностью или вольт-амперной реактивной, символ Var, который измеряется в вольт-амперах. В цепи переменного тока серии RL ток отстает от напряжения питания на угол Φ o .
В чисто индуктивной цепи переменного тока ток будет сдвинут по фазе на 90 o к напряжению питания. Таким образом, общая реактивная мощность, потребляемая катушкой, будет равна нулю, так как любая потребляемая мощность компенсируется генерируемой самоиндуцированной ЭДС-мощностью. Другими словами, полезная мощность в ваттах, потребляемая чистым индуктором в конце одного полного цикла, равна нулю, так как энергия берется из источника и возвращается к нему.
Реактивная мощность ( Q ) катушки может быть задана как: I 2 x X L (аналогично I 2 R в цепи постоянного тока). Затем три стороны силового треугольника в цепи переменного тока представлены кажущейся мощностью ( S ), реальной мощностью ( P ) и реактивной мощностью ( Q ), как показано.
Обратите внимание, что данный индуктор или катушка будет потреблять мощность в ваттах из — за сопротивления обмоток, создающих сопротивление Z. Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России
Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ
Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ
Активное сопротивление
Переменный ток доставляется потребителю с целью его преобразования в иные виды энергии, например, тепло и свет. В бытовых сетях преобладает использование однофазного переменного тока. При подключении потребителя создается активное сопротивление.
Простые цепи переменного тока с активным сопротивлением включает в себя генератор тока и идеальный резистор. При этом должны соблюдаться необходимые условия для идеальной цепи:
- Активное сопротивление не должно равняться нулю, обязательное условие.
- Емкость и индуктивность цепи должны быть равны нулю.
Также, для идеального активного сопротивления должны соблюдаться следующие условия:
- Соблюдаются закон Ома для мгновенных, среднеквадратичных и амплитудных параметров цепи.
- Значение полностью независимо от амплитудных колебаний.
- Между током и напряжением отсутствует сдвиг фаз.
- Элемент, находящийся под напряжением, выделяет долю тепловой энергии, то есть нагревается.
Все эти условия позволяют электрическим приборам работать в пределах точно установленных параметров с максимальным КПД. Любое изменение может быть причиной отсутствия надежного контактного соединения или неисправностью самого потребителя.
Для того чтобы рассчитать величину активного сопротивления в цепи, необходимо знать величину напряжения и силы тока. Для расчета используется формула: R=U/I. Формула состоит из следующих значений:
- «R» — сопротивление, Ом;
- «U» — величина напряжения, вольт;
- «I» — величина силы тока, ампер.
Далее можно сделать простой расчет. В качестве потребителя выступает электрическая печь, включенная в цепь однофазного переменного тока:
- Напряжение цепи 240 вольт.
- При замере силы тока получено значение 4 ампера.
- R= 240/4=60 Ом.
Расчетная величина активного сопротивления — это не окончательное значение. На нее влияет прежде всего сечение проводов включенных в цепь, схема взаимодействия между цепями емкостных и полупроводниковых элементов.
Активное значение цепи также вызывает безвозвратную потерю первоначальной электрической энергии, а так же приводит к снижению мощности.
Треугольник сопротивлений
Активное сопротивление
В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, равно активному сопротивлению. При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:
R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.
На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.
Реактивное сопротивление
Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением. Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения. При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.
Треугольник сопротивлений
Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.
Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.
По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.
7. Активное сопротивление расходует потребляемую мощность практически только на нагрев самого себя, ток через него совпадает по фазе с напряжением, приложенным к нему. Реактивное сопротивление может запасать энергию, ток через него в зависимости от характера (емкостное или индуктивное) будет или опережать или отставать по фазе от приложенного напряжения.
8. Сопротивление, оказываемое переменному току ЭДС самоиндукции, носит название индуктивного сопротивления.
Индуктивное сопротивление будет тем больше, чем больше индуктивность потребителя (цепи) и выше частота переменного тока. Это сопротивление выражается формулой xl = ωL, где xl — индуктивное сопротивление в омах; L — индуктивность в генри (гн); ω — угловая частота где f — частота тока).
Кроме индуктивного сопротивления существует емкостное сопротивление, обусловливаемое как наличием емкости в проводниках и обмотках, так и включением в отдельных случаях в цепь переменного тока конденсаторов. При увеличении емкости С потребителя (цепи) и угловой частоты тока емкостное сопротивление уменьшается.
Емкостное сопротивление равно xс = 1/ωС, где хс — емкостное сопротивление в омах, ω — угловая частота, С — емкость потребителя в фарадах.
9. Цепь переменного тока, состоящая из генератора и последовательно соединенных катушки индуктивности и конденсатора, при определенных условиях XL = ХС превращается в колебательную систему. Такая цепь получила название колебательного контура.
Из равенства XL = ХС можно определить значения частоты генератора, при которой наступает явление резонанса напряжений:
Значение емкости и индуктивности цепи, при которых наступает резонанс напряжений:
Таким образом, изменяя любую из этих трех величин (fрез, L и С), можно вызвать в цепи резонанс напряжений, т. е. превратить цепь в колебательный контур.
10. Эффективным (действующим) называют значение переменного тока равное величине эквивалентного постоянного тока, который при прохождении через такое же сопротивление, что и переменный ток выделяет на нем то же количество тепла за одинаковые промежутки времени. Действующее значение переменного напряжения называется такое постоянное напряжение, которое за такое же время и на таком же сопротивлении выделяет такую же энергию, которая выделяется данным переменным напряжением.
Активное сопротивление R в цепи переменного тока
Что нам интересно знать про простейшую электрическую цепь содержащую R ?
Какой ток протекает в ней, какое напряжение на ней действует? и какая мощность может быть получена.
Здесь изображены две синусоиды, которые нельзя сравнивать и говорить какая больше, какая меньше. Они разные для удобства рассмотрения. Красная синусоида изображает переменное напряжение, а синяя синусоида изображает переменный ток
Если через активное R сопротивление протекает переменный синусоидальный ток, то на нем действует переменное синусоидальное напряжение. Ток и напряжение имеют одинаковую частоту и совпадают по фазе.
Мощность на активном сопротивлении определяется как произведение тока и напряжения. Действующая мощность будет равна произведению действующего значения тока на действующее значение напряжения.
Черные полуволны показывают, что мощность выделяемая в цепи на активном сопротивление изменяется также по синусоидальному закону,
Только знак остается все время положительным, это значит, что поток мощности однонаправлен. Мощность получается как произведение каждой точки синусоиды тока на каждую точку синусоиды напряжения в один и тот же момент. Плюс напряжения на плюс тока даст нам плюс мощности. Минус напряжения на минус тока даст нам плюс мощности.
Это значит, что при протекании тока через активное сопротивление R, электрическая мощность приводит к выделению тепла.
P=UI U = Uа√2 ; I = Iа√2 P = UаIа/2
Средняя мощность за период равна постоянной составляющей мощности
Uа Iа/2
Физический смысл этого явления состоит в том, что активное сопротивление потребляет энергию от источника, выделяет энергию в виде тепла. Электрическая мощность, которая превращается в тепло, называется активной мощностью и обозначается, как и в цепях постоянного тока, буквой P
Активными сопротивлениями в цепях переменного тока являются нагревательные и осветительные приборы, а также резисторы в сигнальных схемах, кроме того, как активные сопротивления проявляют себя все устройства, на которых выделяется полезная мощность в любом виде. Например, электрический мотор, звуковые динамики и т. п.
Треугольники сопротивлений, проводимостей, мощностей, напряжений и токов
Сопротивление, проводимость, мощность, напряжение, ток треугольника. Общее сопротивление, проводимость, двухполюсник и их составляющие удовлетворяют соотношению и могут быть представлены треугольником (рисунок 2.3).
В этом случае фаза напряжения соответствует текущей фазе, а фаза напряжения отличается от текущей фазы на ± π / 2. Аналогично, фаза совпадает с фазой, а фаза отличается от фазы на ± π / 2. Это связано с тем, что действующее напряжение и ток, а также их активные и реактивные компоненты также могут быть представлены в форме треугольника (рисунок 2.4). Если фазы тока и напряжения нескольких RLC-биполяр одинаковы, то есть биполяр имеет чисто активное сопротивление, его реактивная мощность равна нулю () и называется резонансной.
Резонанс может быть достигнут путем изменения параметров схемы R, L, C или угловой частоты ω внешнего напряжения (тока). Ток в последовательном контуре RLC наблюдается на частоте, называемой резонансной частотой.
Коэффициент качества схемы характеризует резонансные характеристики цепи и определяется уравнением. (2.5) Зависимость тока этой цепи от частоты ω приложенного внешнего напряжения с инвариантностью эффективного значения U = const имеет вид. (2.6) Зависимость (2.6) называется резонансной кривой, а I0 = U / R — текущее значение в резонансе.
Когда ω = ω0. Ширина полосы пропускания (ω1-ω2) определяется из соотношения: ω1 и ω2 — частоты, на которых эффективное значение тока в 1 раз превышает фактические элементы схемы (приемник, источник) при расчете резонансного тока I0 = U / AC электрическая схема Идеальная комбинация элементов схемы R, L, C Эквивалентная эквивалентная схема, состоящая из Приемники энергии, как правило, являются по существу активной индукцией (например, электродвигатели).
Такой приемник может быть представлен двумя простейшими эквивалентными цепями, состоящими из двух элементов схемы R и L: а) напряжение последовательно (рис. 53а) и б) параллельные стороны треугольника тока Разделите на U, чтобы получить новый треугольник, похожий на исходный треугольник.
Треугольники со сторонами Y, G, B называются треугольниками проводимости. Отношения продолжаются от треугольника проводимости. Любой, у кого есть идея векторной диаграммы, заметит, что треугольник напряжения прямоугольника, отражающий общее напряжение цепи, напряжение сопротивления и напряжение реактивного сопротивления, очень хорошо виден.
Решение задач | Лекции |
Расчёт найти определения | Учебник методические указания |
Согласно теореме Пифагора о напряжении, связь между этими напряжениями (между общим напряжением цепи и напряжением этой секции) Напряжение Если следующий шаг делит эти значения напряжения на ток (один и тот же ток протекает через все части последовательной цепи), тогда значение сопротивления получается в соответствии с законом Ома.
То есть мы можем говорить о прямоугольном прямоугольнике сопротивления: согласно теореме Пифагора мы устанавливаем взаимосвязь между сопротивлением цепи и реактивным сопротивлением аналогичным образом (как в случае напряжения). Связь выражается как: Общее сопротивление цепи Затем подайте ток на сопротивление. Фактически, увеличивайте каждую сторону прямоугольного треугольника определенное количество раз.
В результате получается прямоугольный треугольник емкости: силовой треугольник Активная мощность, выделяемая активным сопротивлением цепи, связанной с необратимым преобразованием электрической энергии (преобразование в тепло, выполнение работ на оборудовании), составляет Электрическая мощность в катушке и конденсаторе явно связана с реактивной мощностью, участвующей в обратимом преобразовании энергии), и вся электрическая мощность подается в электрическую установку.
Активная мощность измеряется в ваттах (Вт), реактивная мощность измеряется в вар (VAR — реактивная мощность в вольт-амперах), а общая мощность измеряется в ВА (вольт-амперах)
По теореме Пифагора мы имеем право написать: Обратите внимание, что силовой треугольник здесь имеет угол фи, и его косинус может быть легко определен в первую очередь по активной мощности и кажущейся мощности
Косинус этого угла (косинус фи) называется коэффициентом мощности. Это указывает, какая часть общей мощности будет потеряна и не будет возвращена в сеть после завершения полезных работ по электромонтажу.
Образовательный сайт для студентов и школьников
-
Ларри кинг биография кратко
-
Трагедия в театре это кратко
-
Синтез мочевой кислоты кратко
-
Умная фабрика это кратко
- Источники активности личности кратко
Векторная диаграмма индуктора переменного тока
Эти формы напряжения и тока показывают, что для чисто индуктивной цепи ток отстает от напряжения на 90 o . Также можно сказать, что напряжение опережает ток на 90 o . В любом случае общее выражение заключается в том, что ток отстает, как показано на векторной диаграмме. Здесь вектор тока и вектор напряжения показаны смещенными на 90 o . Ток отстает от напряжения .
Мы можем также написать это заявление как, V L= 0 ö и I L= -90 о по отношению к напряжению, V L . Если форма волны напряжения классифицируется как синусоида, то ток I L можно классифицировать как отрицательный косинус, и мы можем определить значение тока в любой момент времени как:
Поскольку ток всегда отстает от напряжения на 90 o в чисто индуктивной цепи, мы можем найти фазу тока, зная фазу напряжения или наоборот. Так что если мы знаем значение V L , то I L должно отставать на 90 o . Аналогичным образом, если мы знаем значение I L, то V L, следовательно, должно опережать на 90 o . Затем это отношение напряжения к току в индуктивном контуре будет производить уравнение, определяющее индуктивное сопротивление Х L катушки.
Мы можем переписать уравнение для индуктивного сопротивления в более привычную форму, которая использует обычную частоту питания вместо угловой частоты в радианах ω и это будет выглядеть так:
Из приведенного выше уравнения для индуктивного реактивного сопротивления можно видеть, что, если увеличить частоту, либо индуктивность, общее значение индуктивного реактивного сопротивления также увеличится. Когда частота приближается к бесконечности, реактивное сопротивление индукторов также увеличивается до бесконечности, действуя как разомкнутая цепь.
Однако, когда частота приближается к нулю или постоянному току, реактивное сопротивление индукторов будет уменьшаться до нуля, действуя как короткое замыкание. Это означает, что индуктивное сопротивление «пропорционально» частоте.
Другими словами, индуктивное реактивное сопротивление увеличивается с частотой, в результате чего X L будет небольшим на низких частотах, а X L будет высоким на высоких частотах, что продемонстрировано на графике ниже.
Основные различия между активным и реактивным сопротивлением
Когда электрический ток проходит через элементы с активным сопротивлением, происходят необратимые потери выделяемой мощности. Типичным примером служит электрическая плита, где в процессе работы происходят необратимые превращения электричества в тепловую энергию. То же самое происходит с резистором, в котором тепло выделяется, но обратно в электроэнергию не превращается.
Помимо резисторов, свойствами активного сопротивления обладают приборы освещения, электродвигатели, трансформаторные обмотки, провода и кабели и т.д.
Характерной особенностью элементов с активным сопротивлением являются напряжение и ток, совпадающие по фазе. Рассчитать этот параметр можно по формуле: r = U/I. На показатели активного сопротивления оказывают влияние физические свойства проводника – сечение, длина, материал, температура. Эти качества позволяют различать реактивное и активное сопротивление и применять их на практике.
Реактивное сопротивление возникает в тех случаях, когда переменный ток проходит через так называемые реактивные элементы, обладающие индуктивностью и емкостью. Первое свойство характерно для катушки индуктивности без учета активного сопротивления ее обмотки. В данном случае причиной появления реактивного сопротивления считается ЭДС самоиндукции. В зависимости от частоты тока, при ее возрастании, наблюдается и одновременный рост сопротивления, что отражается в формуле xl = wL.
Реактивное сопротивление конденсатора зависит от емкости. Оно будет уменьшаться при увеличении частоты тока, поэтому данное свойство широко используется в электронике для выполнения регулировочных функций. В этом случае для расчетов используется формула xc = 1/wC.
В электронике существует не только активное и реактивное, но и полное сопротивление цепи, представляющее собой сумму квадратов обоих сопротивлений. Этот параметр обозначается символом Z и отображается в виде формулы:
В графике это выражение выглядит в виде треугольника сопротивлений, где реактивное и активное сопротивление соответствуют катетам, а полное сопротивление или импеданс – гипотенузе.
Импеданс элемента
Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе.
Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние. Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.
Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где
- Xl — индуктивность;
- Xс — ёмкость;
- R — активная составляющая.
Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.
Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:
- X > 0, в элементе проявляются индуктивные свойства;
- X = 0, в ёмкости присутствует только активная величина;
- X < 0, в элементе проявляется ёмкостное сопротивление.
Будет интересно Чем отличается пусковой конденсатор от рабочего?
Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное – с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.
Импеданс элемента.
От чего зависит индуктивное сопротивление
При включении катушки индуктивности в цепь переменного тока, под действием непрерывно изменяющегося напряжения происходят изменения этого тока. В свою очередь, эти изменения вызывают генерацию магнитного поля, которое периодический возрастает или убывает. Под его влиянием в катушке индуцируется встречное напряжение, препятствующее изменениям тока. Таким образом, протекание тока происходит под непрерывным противодействием, получившим название индуктивного сопротивления.
Данная величина связана напрямую с частотой приложенного напряжения (f) и значением индуктивности (L). Формула индуктивного сопротивления будет выглядеть следующим образом: XL = 2πfL. Прямая пропорциональная зависимость, в случае необходимости, позволяет путем преобразования основной формулы вычислить частоту или значение индуктивности.
Под действием переменного тока, проходящего по проводнику, вокруг этого проводника образуется переменное магнитное поле. Действие этого поля приводит к наведению в проводнике электродвижущей силы обратного направления, известной еще как ЭДС самоиндукции. Противодействие или сопротивление ЭДС переменному току получило название реактивного индуктивного сопротивления.
Данная величина зависит от многих факторов. В первую очередь на нее оказывает влияние как значение тока не только в собственном проводнике, но и в соседних проводах. То есть увеличение сопротивления и потока рассеяния происходит по мере увеличения расстояния между фазными проводами. Одновременно снижается воздействие соседних проводов.
Существует такое понятие, как погонное индуктивное сопротивление, которое вычисляется по формуле: X0 = ω x (4,61g x (Dср/Rпр) + 0,5μ) x 10-4 = X0’ + X0’’, в которой ω является угловой частотой, μ – магнитной проницаемостью, Dср – среднегеометрическим расстоянием между фазами ЛЭП, а Rпр – радиусом провода.
Величины X0’ и X0’’ представляют собой две составные части погонного индуктивного сопротивления. Первая из них X0’ представляет собой внешнее индуктивное сопротивление, зависящее только от внешнего магнитного поля и размеров ЛЭП. Другая величина – X0’’ является внутренним сопротивлением, зависящим от внутреннего магнитного поля и магнитной проницаемости μ.
На линиях электропередачи высокого напряжения от 330 кВ и более, проходящие фазы расщепляются на несколько отдельных проводов. Например, при напряжении 330 кВ фаза разделяется на два провода, что позволяет снизить индуктивное сопротивление примерно на 19%. Три провода используются при напряжении 500 кВ – индуктивное сопротивление удается снизить на 28%. Напряжение 750 кВ допускает разделение фаз на 4-6 проводников, что способствует снижению сопротивления примерно на 33%.
Погонное индуктивное сопротивление имеет величину в зависимости от радиуса провода и совершенно не зависит от сечения. Если радиус проводника будет увеличиваться, то значение погонного индуктивного сопротивления будет соответственно уменьшаться. Существенное влияние оказывают проводники, расположенные рядом.