Введение
В наше современное время наращивание мощностей по пассажирским и грузовым перевозкам при использовании железнодорожного транспорта является актуальном вопросом, что требует от правительства РФ и руководства РЖД оперативного решения новых поставленных задач. При реализации данного вопроса необходимо увеличивать скорость движения составов, повышать весовые характеристики формируемых составов, а также продолжать заниматься в больших размерах электрификацией железнодорожных путей. На сегодняшний день увеличивается объём работ, связанных с усилением железнодорожного полотна. Для этого производится укладка тяжёлых рельсов Р75 и Р65, применяются рельсовые основания из железобетона, создаются бесстыковые пути. Меняется непосредственно и рельсовая колея. Достигается всё это посредством уложения ряда круговых кривых, удлинения переходных кривых и увеличения возвышения наружной поверхности рельса.
Российские железные дороги эксплуатируют порядка двухсот тысяч стрелочных переводов, имеющих различные виды, каждый из которых является сложным и дорогостоящим элементом железнодорожных дорог. Обеспечение безопасности следования грузовых и пассажирских составов, бесперебойности перевозочного процесса и улучшения экономических показателей всего путевого хозяйства достигается надёжностью работы означенных узлов.
В последние время уделяется повышенное внимание к стрелочному хозяйству на российской железной дороге. Сейчас производится совершенствование технологий и конструкций стрелочных приводов
Под постоянным контролем находится текущее содержание и укладочных технологий.
Приоритетными направлениями стрелочного хозяйства являются: разработка новых условий в различных эксплуатационных условиях, обеспечение постоянного контроля, путём оценки их надёжности и прочности всех составляющих. Обязательно вести новую разработку по проектированию стрелочных приводов, их математической и теоретической базы.
При выборе строения железнодорожного пути, его конструктивной особенности и типа, должны обязательно учитываться и ложиться в основу технико-экономические и технические расчёты, с учётом эксплуатационного опыта, анализа, тщательного проектирования и научного исследования.
Определение класс железнодорожного пути
Современная система ведения путевого хозяйства основана на классификации пути в зависимости от грузонапряжённости и скоростей движения поездов.
Железнодорожный путь классифицируется в зависимости от сочетаний грузонапряженности и максимальных допускаемых скоростей движения пассажирских и грузовых поездов.
По грузонапряженности пути разделяют на 5 групп, обозначаемых буквами (Б, В, Г, Д, Е) по допускаемым скоростям — на 7 категорий, обозначаемых цифрами (1…7). Классы пути обозначают цифрами.
Принадлежность пути соответствующему классу. группе и категории обозначается сочетанием буквы и цифр. Например, 2Б3 обозначает, что путь принадлежит 2 классу, входит в группу Б и категорию 3.
При определении класса пути необходимо учитывать:
1. На железнодорожных линиях федерального (общесетевого) значения пути должны быть не ниже 3 класса.
2. Непрерывная длина пути соответствующего класса, как правило, не должна быть менее длины участка движения с одинаковыми на всем протяжении грузонапряженностью и установленными скоростями пассажирских или грузовых поездов (в зависимости от того, какая из них соответствует более высокому классу). Без учета отдельных километров и мест, по которым уменьшена установленная скорость из-за кривых малого радиуса, временно неудовлетворительного технического состояния пути или искусственных сооружений, либо по другим причинам.
3. В зависимости от количества пассажирских и пригородных графиковых поездов путь должен быть не ниже:
- 1 класса — более 100 поездов в сутки;
- 2 класса — 31-100 поездов в сутки;
- 3 класса — 6-30 поездов в сутки.
При скорости 80 км/ч класс пути понижается на одну ступень.
На двухпутных и многопутных участках классы путей устанавливаются одинаковыми с классом пути, имеющим большую грузонапряженность, при условии, если разница в грузонапряженности не превышает 30%. При большей разнице класс каждого из путей устанавливается по фактическому сочетанию грузонапряженности и установленной скорости.
Пути, предназначенные для движения подвижного состава с опасными грузами, не должны быть ниже 4 класса.
Приемо-отправочные и другие станционные пути, предназначенные для сквозного пропуска поездов со скоростями 40 км/ч и более, подъездные пути со скоростями более 40 км/ч, а также горочные пути относятся к 3 классу. Станционные пути, не предназначенные для сквозного пропуска поездов, при установленных скоростях 40 км/ч, а также специальные пути, предназначенные для обращения подвижного состава с опасными грузами, сортировочные и подъездные пути со скоростями движения 40 км/ч относятся к 4 классу. Остальные станционныеи подъездные пути относятся к 5 классу.
Сортировочные и горочные пути на сортировочных станциях относятся к 4 классу.
Главные пути, где установлены скорости движения пассажирских поездов более 140 км/ч, относятся к внеклассным путям.
В зависимости от класса пути устанавливаются технические условия и нормативы на укладку и ремонт пути.
Железнодорожная колея
Кривые участки с железнодорожной колеёй обдают рядом особенностей, которые необходимо знать. На участках с кривизной наружный рельс обладает возвышением по отношению к внутреннему рельсу. Переходные кривые с малым радиусом требуют устанавливать на внутренней части рельсового пути укороченные рельсы. Необходимо усиливать путь, путём увеличения расстояния между двумя или тремя многопутными линиями и осями путей, учитывая все требования по габаритам. Наружный рельс возвышается при допустимом значении, когда радиус кривой равен 4000 м или имеет меньшее значение. В этом случае происходит равномерное распределение нагрузки. Поездная масса, скорость движения и радиус кривой напрямую влияют на величину возвышения. Правила технической эксплуатации допускают максимальную величину значения возвышения, которая равняется 150 мм.
Переходные кривые необходимы, поскольку, таким образом достигается плавное сопряжение примыкающей прямой с кривой, непосредственно на путевом профиле точно так, как это указано в плане. Процедура уширения колеи достигается на практике методом вписывание подвижного состава в кривые. Закрепление колёсных пар непосредственно в раме, что позволяет сохранить параллельность в рамках границ жёсткой базы. При нахождении в границах кривой, расположиться по радиусу, может только одна колёсная пара. Другие пары имеют определённый угол к нему. При этом необходимо увеличивать зазор между рельсами и гребнями колёс, что сделает возможным избежать в таких случаях клина колёсных пар.
Предотвращая возможную стыковку, на каждом радиусе кривой, должно быть установлено своё значение величины укорочения рельса. В таких случаях, унификация предусматривает установку стандартного укорочения, непосредственно длины звена рельсов, которое представлено следующими значениями, где длина равна от 25 м до 80 м и 160 мм.
Стальные шпалы
Стальные шпалы Стальные шпалы из гнутого стального профиля, являются относительно лёгкими по весу. Такие шпалы иногда используются для временных подъездных путей, ветках промышленных предприятий. Их преимущество в том, что они не подвержены гниению и атакам насекомых, хорошо сохраняют ширину колеи, но при этом большим недостатком является то, что они подвержены коррозии.
Стальные шпалы используются на железных дорогах Марокко, Алжира. Как известно, в этих странах очень сухой климат (даже на побережьях). В Саудовской Аравии, где стальные шпалы также имеют широкое применение, основной причиной их использования стало постоянное воровство деревянных шпал бедуинами для костров.
Металлические шпалы применяются также в доменном и сталеплавильном производстве на тех участках, где из-за высоких температур деревянные шпалы горят, а в железобетонных шпалах происходит расслоение бетона. Кроме того, металлические шпалы позволяют устраивать верхнее строение пути при повышенных нагрузках на ось подвижного состава — до 60 тонн (нагрузки на ось подвижного состава РЖД до 25 т)..
В России стальные шпалы на железнодорожной сети общего пользования применены только на некоторых участках Калининградской железной дороги.
Рельсовые скрепления. Противоугоны
Посредством применения промежуточного скрепления происходит крепление рельсов к шпалам. Скрепления имеют три вида – это раздельные, смешанные и нераздельные. Раздельное крепление предусматривает процесс крепления рельса к подкладкам посредством клеммных болтов, жёстких и упругих клемм. Подкладка крепится к шпалам с помощью шурупов или болтов. Смешанное скрепление требует соединения подкладок со шпалами посредством дополнительных костылей. Нераздельное скрепление рельсов и подкладок, требует крепления к шпалам теми же шурупами или костылями. Во время затяжного спуска или резкого торможения поездного состава возникают силы, из-за которых, как правило, возможно смещение рельсового полотна в продольной плоскости. Это смещение может происходить вместе со шпалами или непосредственно по шпалам.
Для предотвращения подобного смещения рельсового пути, происходит обязательная установка, так называемых противоугонов. Их конструкция представляет собой стандарт пружинной скобы, которая защемляется на рельсовой подошве рельса и упирается в шпалу. На рельсовом звене длиной 25 метров должно быть установлено минимум 18 пар противоугонов, максимум потребуется установить 44 противоугона. На участках, где есть автоблокировка, установленная на границе блок-участков, применяются изолирующие стыки, которые не допускают прохождение электрического тока от соединённых соседствующих рельсов. Для этого в зазоре стыка размещают текстолитовую или трикоповую прокладку, которая в точности повторяет рельсовый контур. Сегодня уже нашло широкое применение клееболтовых стыков, в них установлены стыковые накладки, изготовленные из металла. Для этих же целей возможно применение изолирующих прокладок, изготовленных из стеклоткани, а также необходимо с помощью болтов, имеющих изолирующие втулки, произвести соединение, применяя эпоксидный клей с концевой частью рельсового полотна, создав монолитную конструкцию.
Рельсовая колея имеет тесную связь с колёсными парами подвижного состава, их размерами и конструктивными особенностями. Стальная ось наглухо соединена с колёсной парой, обладающая специальными гребнями, которые препятствуют сходу с рельсового полотна.
3.1 Возвышение наружного рельса в кривой
Возвышение устраивается в кривых участках пути радиусом 4000 м и менее. Максимальная величина возвышения не должна превышать 150 мм.
Перерасчету подлежат возвышения в кривых, в которых наблюдается повышенный износ рельсов по одной из ниток, интенсивные расстройства по ширине колеи и направлению в плане, допускаемые скорости по возвышению и его отводу не соответствуют друг другу, начало и конец отводов по кривизне и возвышению не совпадают более чем на 10 м, реализуемые скорости на 10-15% отличаются от максимальных, установленных дорожным приказом, или от ранее принятых при расчете возвышения, в том числе и из-за введения длительных ограничений скорости, а также в кривых на участках запланированных капитальных работ.
Величина возвышения в круговой кривой определяется начальником дистанции пути и утверждается начальником железной дороги.
Величина возвышения в кривой, мм, определяется по следующим формулам:
для пассажирского поезда:
hр пас =12,5 V²max пас/ R-115; (1)
для грузового поезда:
hр гр =12,5 V²max гр/ R- 50; (2)
для потока поезда:
hр пот =12,5 V²пот/R; (3)
где: Vmax пас и Vmax гр — максимальные скорости, км/ч соответственно пассажирского и грузового поезда, установленные в кривой по приказу начальника дороги;
Vпот — приведенная скорость поездопотока, км/ч;
R — радиус кривой, м.
Из полученных по формулам (1-3) величин возвышения принимается большее и округляется до значения, кратного 5 мм.
В данном случае вертикальная прямая, соответствующая кривой R=1300м пересекается с линией поездпотока. Значит расчёт возвышения наружного рельса в кривой следует вести по формуле:
Точное значение приведенной скорости поездопотока V
для расчета возвышения по формуле (3) определяется по формуле:
h =12,5 V²пр/R;
где: Vпот — приведенная скорость поездпотока. По заданию Vпот=45км/ч.
Возвышение наружного рельса в кривой будет равна:
h =12,5 50²/1100 = 28мм;
3.2 Расчет основных элементов для разбивки переходной кривой
Длина переходной кривой l зависит от принятого уклона отвода возвышения i, скорости движения, допустимой величины нарастания горизонтальных ускорений, допустимой скорости подъема колеса по наружному рельсу и т.д.
В данном случае принимаются следующие нормативы:
- уклон отвода возвышения рельса i= 0,001;
- величина нарастания ускорения αнп = 0,7 м/с2; ψ = 0,6 м/с3;
- скорость подъема колеса по наружному рельсу 28 мм/с = 1/10 км/ч.
Определяется длина кривой превышающие указанных условий
Из условия непревышения допустимого уклона iотвода возвышения наружного рельса
l01= h/i= 20 / 0,001=20м
При скорости подъема колеса по наружному рельсу 28 мм/с = 1/10 км/ч h0 /l0 =1/(10 Vmax).Отсюда:
l02 =10h Vmax =10*0,0,02*90 =18,0м
Из условия допустимой величины нарастания горизонтальных ускорений
l03 = αнпVmax/ 3,64 =0,7*90/3,64 =63 / 3,64 =29,2м
Устанавливается длина переходной кривой в соответствии с СТНЦ-01-95 в зависимости от заданной величины радиуса R, категории линии и зоны скорости (таблица методуказаний). Принимается l04 =80м
Из четырёх определённых значений длины переходной кривой принимается наибольшая, т.е принимается длина переходной кривой l=80м
Величина уклона отвода будет:
i=h/l= 0,020 / 80= 0,00025м
Определяются параметр кривой:
C = Rl= 1100*80 =88000м2
Величина сдвижки круговой кривой к центру:
Расстояние m от тангенсного столбика сдвинутой кривой до начала переходной кривой:
Значение абсциссы xи координаты удля конца переходной кривой:
Железобетонные шпалы
Железобетонные шпалы после выемки из формы.
В некоторых случаях вместо шпал применяются сплошные блочные основания в виде плит или рам, выполненные из железобетона или металла С 1970-х в СССР приобрели популярность шпалы из напряжённого железобетона, особенно удачным их использование оказалось на бесстыковом пути.
Железобетонные шпалы представляют собой железобетонные балки переменного сечения. На таких балках имеются площадки для установки рельсов, а также отверстия под болты рельсошпального скрепления (при забивании в отверстия деревянных пробок используются также костыльные и шурупные соединения). Железобетонные шпалы изготавливаются с предварительным натяжением арматуры. Технология изготовления железобетонных шпал следующая: в специальную форму помещаются струны арматуры, которым придаётся натяжение (в зависимости от назначения шпалы, обычно 180 атм.), форма заполняется бетоном и уплотняется вибрацией. Затем форма разбирается, отправляется в пропарочную камеру, где бетон затвердевает, после чего напряжение со струн передают на бетон и форма переворачивается (кантуется). Такой способ изготовления шпал придаёт им упругость и предохраняет шпалу от раскола под подвижным составом.
Достоинства железобетонных шпал: практически неограниченный срок службы вследствие высокой механической прочности и неподверженности гниению, что обуславливает возможность повторного использования шпал, а также использования на грузонапряжённых участках пути. Недостатки: недостаточная жёсткость, большая стоимость и вес, возможность усталостного разрушения бетона..
Для скрепления рельсы и железобетонной шпалы в последнее время все чаще используют анкерное соединение[источник не указан 1685 дней
Балластный слой
При строительстве железных дорог производится применение двух типов железнодорожных путей, которые имеют принципиальное различие. Так сооружается безбалластный или балластный слой. Сооружение слоя безбалластного типа применяется, в основном, при строительстве эстакад, больших тоннелей, и металлических мостов. Балластный слой пути предназначен для создания горизонтальной и вертикальной устойчивости и решёток для обеспечения эксплуатационного процесса, что позволяет обеспечивать равномерное распределение давления, возникающего на шпалах, которое отводят на земляное полотно большей площади. Данный тип слоя позволяет достичь быстрой отводки воды непосредственно со всей площади земляного полотна и балластной призмы. Это функция позволяет формировать оптимальную упругость в подрельсовом основании, особенно при применении железобетонных шпал.
Основные требования к балластному материалу заключаются в следующем: применяемые материалы должны обладать прочностью, упругостью и устойчивостью при атмосферных воздействиях и различных нагрузках, возникающих в эксплуатационный период. Данный материал не должен прорастать травяным покровом, размываться под воздействием дождя, пылить в момент прохождения составов, не должен распыляться при ветровой погоде. Идеальным дренирующим материалом для балластного слоя служит ракушечник, песок, гравий, щебень. Один из лучших материалов для создания подобного слоя служит щебень, созданный из гальки, валунов и естественного камня.
2.1 Расчет повышений и понижений темпера туры рельсовых плетей, допустимых по условиям прочности и устойчивости
Допускаемое повышение температуры рельсовых плетей [Δtу] устанавливается на основании исследований устойчивостипути.
Допускаемое понижение температуры рельсовых плетей определяется расчетом прочности рельсов, основаны на условии, что сумма растягивающих напряжений, возникающих от воздействия подвижного состава и от изменений температуры, не должна превышать допускаемого напряжения материла рельсов.
В данном случае величина [Δtу] определяется на основании данных таблицы №4 методуказаний.
[Δtу] = 40°С;
Knσk + σt ≤
где: Kn — коэффициент запаса прочности (Kn= 1,3 для рельсов первого срока службы; Kn= 1,4 для рельсов, пропустивших нормативный тоннаж);
σk — напряжение в кромках подошвы рельса под нагрузкой от колес подвижного состава, МПа;
σt — напряжение в поперечном сечении рельса от действия растягивающих температурных сил, возникающих при понижении температуры рельса по сравнению с его температурой при закреплении, МПа;
— допускаемое напряжение (для новых не закаленных рельсов = 350 МПа, для новых термоупрочнённых — 400 МПа).
Напряжение в подошве рельса σk определяется по правилам расчета верхнего строения пути на прочность.
Температурное напряжение, возникающее в рельсе в связи с несостоявшимся изменением его длины при изменениитемпературы,
σt = αEΔt = 2,5 Δt,
где α — коэффициент линейного расширения (а = 0,0000118 1/град);
Е — модуль упругости рельсовой стали (Е = 210 ГПа= 2,1-105 МПа);
Δt —разность между температурой, при которой определяется напряжения, и температурой закрепления плети, °С.
Наибольшее допускаемое по условию прочностирельса понижение температуры рельсовой плети по сравнениюс ее температурой при закреплении определяется по формуле:
[Δtр] = — Knσk= — Knσk
αE 2,5
В данном случае понижение [Δtр] температуры рельсовых плетей по сравнению с температурой их закрепления для бесстыкового пути с неупрочненными рельсами первого срока службы на железобетонных шпалах и щебеночном или асбестовом балласте приведены в таблице №5 методуказаний: [Δtр] = 82°С; Для рельсов термоупроченных:
[Δtр] = 82 + 20 = 102°С;
Тогда будет равно:
= [Δtу]+ [Δtр]+ [Δtз] = 40+82–10=112°С;
Условие ТА≤ соблюдается; 96°С< 112°С, значит при выше указанных условиях на данном участке можно укладывать бесстыковой путь.
Шпалы
Шпалы являются наиболее важным видом подрельсовых оснований и служат для восприятия давления от рельсов и передачи его на балластный слой. Кроме того, шпалы предназначены для крепления к ним рельсов и обеспечения постоянства ширины колеи. Помимо шпал к подрельсовым основаниям относятся мостовые и переводные брусья, отдельные опоры в виде полушпал, а также сплошные опоры в виде плит и рам. Необходимо, чтобы шпалы были прочными, упругими и дешевыми, а также обладали достаточно высоким электрическим сопротивлением. Материалом для шпал служат дерево, железобетон и металл.
Достоинствами деревянных шпал являются легкость, упругость, простота изготовления, удобство крепления рельсов, высокое сопротивление протеканию тока в рельсовых цепях. К недостаткам таких шпал относятся сравнительно небольшой срок службы (15… 18 лет) и значительный расход деловой древесины. Для увеличения срока службы деревянные шпалы пропитывают масляными антисептиками. Для изготовления шпал обычно используются сосна, ель, пихта и лиственница, реже — кедр и береза.
По форме поперечного сечения деревянные шпалы подразделяют на обрезные, опиленные с четырех сторон, полуобрезные, у которых опилены три стороны, и необрезные, имеющие опиленные поверхности только сверху и снизу (рис. 6.3).
В зависимости от назначения деревянные шпалы изготавливают трех типов. Шпалы I типа предназначены для главных путей магистральных железных дорог, II типа — для станционных и подъездных путей и III типа — для путей промышленных предприятий. Размеры поперечного сечения шпал в зависимости от их типа приведены в табл. 6.2. Стандартная длина деревянных шпал 2750 мм.
Ишп — высота шпалы; Ь, Ь’ — ширина верхней постели; А, — ширина нижней постели
Для особо грузонапряженных участков изготавливают шпалы длиной 2800 мм.
На железных дорогах России наряду с деревянными получили широкое распространение железобетонные шпалы с предварительно напряженной арматурой (рис. 6.4). Их достоинствами являются долговечность (40…50 лет), обеспечение высокой устойчивости пути и плавности хода поездов, что обусловлено одинаковыми размерами и равной упругостью шпал. Кроме того, применение железобетонных шпал позволяет сберечь древесину для других нужд. Благодаря указанным качествам они уже используются на главных путях всех основных направлений сети, в том числе на участках скоростного движения поездов.
К недостаткам железобетонных шпал относятся большая масса, наличие электропроводности, высокая жесткость и сложность крепления рельсов к ним. Для повышения упругости пути с железобетонными шпалами под рельсы укладывают амортизирующие прокладки. Во избежание утечки электрического тока применяют рельсовые скрепления специальной конструкции с электроизоляционными деталями.
Железобетонные шпалы изготавливают из тяжелого бетона с арматурой из стальной углеродистой холоднотянутой проволоки периодического профиля диаметром 3 мм.
В зависимости огвида рельсового скрепления железобетонные шпалы подразделяют на два типа: Ш1 — для раздельного клеммно-
Таблица 6.2
Тип шпалы | Высота
^шп» ММ |
Ширина, мм | ||
верхней постели | нижней постели А, | |||
Ь | Ь’ | |||
I | 180 | 180 | 210 | 250 |
II | 160 | 150 | 195 | 230 |
III | 150 | 140 | 190 | 230 |
Металлические шпалы не получили распространения в нашей стране из-за значительного расхода металла, высокой электропроводности, большой жесткости, подверженности коррозии и неприятного шума при движении поездов.
Порядок расположения шпал по длине рельсового звена называют их эпюрой. На железных дорогах России применяют три эпюры, соответствующие укладке 1600, 1840 и 2000 шпал на 1 км пути.
На станциях метро и при устройстве смотровых канав в депо вместо сплошных шпал используются полушпалы, заглубленные в бетон.
⇐Балластный слой | Общий курс железных дорог | Рельсы⇒
Деревянные шпалы. Назначение и применение
Чаще всего для строительства железных дорог используют деревянные шпалы. Это опора для рельсов, которая имеет вид брусьев. Для изготовления деревянных шпал могут использоваться различные породы деревьев. Чаще всего, в качестве материала для шпал выступает дерево фото которого предоставлено на сайте.
Это может быть клен, эвкалипт или дуб. Более экономным вариантом древесины для деревянных шпал являются хвойные породы деревьев. К примеру, очень часто для изготовления шпал используют сосна кругляк, а также такие хвойные породы как ель, кедр, пихта. Однако стоит отметить, что такие шпалы подвержены более быстрому износу.
Главным назначением деревянных шпал является восприятие от рельсов динамической силы. Также шпалы необходимы для того, чтобы обеспечивать стабильность ширины колеи, а также, чтобы проводить изоляцию рельсовых нитей.
Деревянные шпалы имеют много преимуществ. Во-первых, они достаточно упруги. В-вторых, процесс их обработки и закрепления является простым. В-третьих, деревянные шпалы относительно не дорогие, но, в то же время, такие шпалы обладают прекрасными электроизолирующими свойствами. Также шпалы из дерева являются стойкими к изменению температуры окружающей среды и различным атмосферным явлениям.
Сколько по времени могут служить деревянные шпалы? Это зависит от породы древесины, условий эксплуатации, а также от интенсивности влияния внешней среды. В среднем этот отрезок времени находится в диапазоне от семи до сорока лет.
Очень часто в процессе применения деревянных шпал специалисты используют такое понятие как куб бревна. Что оно означает? Этот показатель используют для того, чтобы рассчитать, сколько стоит материал для изготовления шпал в объеме один метр кубичный. Также этот показатель нужен для того, чтобы предварительно рассчитать, сколько материала понадобится для строительства определенного участка железной дороги. Кубатура бревна всегда зависит от сорта древесины, ее уровня влажности, а также от размера бревен.
Область применения деревянных шпал очень часто зависит от их размера. В зависимости от размера шпалы разделяют на первый, второй и третий тип. Первый тип шпал используют для укладки на главные пути железной дороги, второй – на пути станций, а также на пути промышленных предприятий, а третий – на пути предприятий, которые являются малодеятельными.
doska-vsem.ru