Полиплоидия

Что такое полиплоидия, ее значение и роль в образовании видов

Значение полиплоидии

Полиплоидия сыграла огромную роль в эволюции диких и окультуренных растений (предполагают, что 30% растений появились благодаря полиплоидии). Свидетельством роли полиплоидии в эволюционном становлении растительного мира служат полиплоидные ряды. В таком случае представители одного рода формируют эуплоидный ряд с увеличением количества хромосомных наборов.

Усовершенствованная морфология и физиология полиплоидных растений дает им возможность заселять новые места, которые недоступны другим видам из-за неблагоприятные внешние условия.

Многие века человек неосознанно вел отбор полиплоидных видов, которые приносили большие урожаи, были выносливы к плохим погодным условиям и действию патогенных микроорганизмов. Овладение методом экспериментального образования полиплоидов дало возможность внедрить высокопродуктивные виды, например, триплоидную сахарную свеклу, или перечную мяту.

Полиплоидия также встречается при патологическом разрастании ткани, образовании злокачественных опухолей.

Возникновение полиплоидии

Причиной возникновения является нерасхождение хромосом в мейозе. В таком случае у половой клетки оказывается полный набор соматической клетки. Если такая гамета сливается с обычной, то получается триплоидная зигота, дающая начало триплоиду. При условии, что две гаметы содержат диплоидный набор, их слияние ведет к образованию тетраплоида.

Также полиплоидные организмы могут появиться при неоконченном митозе. Так, если после удвоения клетки не происходит ее деления, то получается тетраплоид. Тетраплоидные зиготы являются предшественниками тетраплоидных побегов, причем в цветках будут формироваться диплоидные гаметы вместо гаплоидных. При самоопылении может образоваться тетраплоид, а при обычном опылении гаметой – триплоид. Если растение размножается вегетативным путем, то исходная плоидность сохраняется.В дикой природе полиплоидия широко распространена, однако представлена неравномерно среди различных сообществ растительных и животных организмов. Данная разновидность мутаций играет важную роль в эволюционных преобразованиях диких и культурных покрытосеменных растений, среди которых около 50% видов являются полиплоидами.

Так как полиплоидные растения характеризуются ценными хозяйственными свойствами, то искусственную полиплоидизацию используют в растениеводстве с целью получения селекционного материала. Для этого в селекции применяются особые мутагены, к примеру, колхицин, который нарушает расхождение хромосом в мейозе и митозе.

Примерно 80% существующих ныне сортов разных видов культурных растений являются полиплоидами. К ним относятся овощные и плодово-ягодные культуры, злаковые, цитрусовые, технические, декоративные и лекарственные растения. Ярким примером результата полиплоидии служит триплоидная сахарная свекла, которая в отличие от обычной, имеет большую урожайность вегетативной массы и более крупные размеры корнеплодов в сочетании с их повышенной сахаристостью и устойчивостью к различным болезням. Но триплоидные растения не дают потомства. Поэтому селекционеры могут получать гибридные семена только при скрещивании тетраплоидной и диплоидной форм. Вследствие доказанной стерильности триплоидных гибридов были получены бессеменные плоды арбуза, винограда, банана, которые пользуются большим спросом.

Существуют такие виды полиплоидии: автополиплоидия и аллополиплоидия. Первый вид описан выше. При аллополиплоидии ученые объединили метод искусственной полиплоидии с отдаленной гидридизацией. Так, были получены плодовитые гибриды растений, например, редьки и капусты, пшеницы и ржи, пшеницы и пырея. Эти гибриды обладают высокой урожайностью, холодостойкостью, неприхотливостью, устойчивостью к болезням.

Похожие материалы:

Селекция растенийМетоды селекции растенийГибридизация

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательный и методический. Бессознательный отбор проявляется в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенный сорт или породу. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами.

В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора
Признак Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существование Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Отбор бывает массовый и индивидуальный. Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства. Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства. Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Полиплоидные предки

Существует гораздо меньше видов полиплоидных животных, чем растений. Точная причина этого не совсем известна. Некоторые ученые считают, что это может быть связано с увеличением сложности строения организмов животных по сравнению с растениями. Другие предполагают, что полиплоидия может препятствовать образованию гамет, делению клеток или регуляции генома. Однако есть некоторые исключения. Примерами полиплоидии в животном мире являются рыбы, рептилии и насекомые.

Фактически недавние результаты исследований генома показывают, что многие виды, которые в настоящее время являются диплоидами, включая людей, были получены из полиплоидных предков. Эти виды, которые пережили древние генотипические дупликации, а затем редукцию генома, называются палеополиплоидами.

Как возникает полиплоидия

Полиплоидия — одна из форм изменчивости. Обеспечивает видовое разнообразие, когда потомство приобретает новые черты, отличаясь фенотипически от родителей.

Основное условие — отсутствие расхождения хромосом в мейозе. При этом половая клетка будет иметь диплоидный хромосомный набор. Если ее скрестить с гаплоидной клеткой получится триплоид, если же произойдет слияние между клетками с одинаковым количеством хромосомных наборов – образуется тетраплоидная зигота.

У каких организмов встречается полиплоидия? Среди диких видов растений, особенно цветковых, полиплоидия наблюдается часто (полиплоидов примерно половина). Поскольку растения могут размножаться вегетативно, полиплоидность не мешает им давать потомство, в отличие от животных.

В животном мире такое явление редкое, поскольку нерасхождение хромосом в мейозе приводит к генетическим ошибкам. Полиплоидия у животных характерна для некоторых гермафродитов (представители типа Черви) и особей, которые размножаются без оплодотворения. Плоидность простейших отличается колоссальным количеством наборов хромосом (около ста).

Гибридизация

Межвидовая

Проводят неродственное скрещивание. Здесь используют особей разных видов или сортов, с целью получения необходимого набора морфологических характеристик. Так создается новая популяция, сочетающая в себе лучшие качества обеих сторон. На основе данного метода возможно выведение новых видов, с улучшенными свойствами.

Существует отдаленная гибридизация, здесь организмы принадлежат к различным видам или родам. Такое скрещивание в ряде случаев может привести к бесплодному потомству. Пример мул – гибрид зебры и лошади.

Внутривидовая

Для закрепления полезных свойств применяют инбридинг. Последний подразумевает скрещивание представителей близкородственных линий, с наилучшими генотипами (их выявляют индивидуально). Такие организмы обладают родственными набором аллелей. 

Гомологичные аллели приводят к гетерозису — явлению гибридной силы, проявляющемуся в дочерних линиях. Скрещивание родственных видов направлено на сохранение генотипа популяции, что необходимо для закрепления полезных признаков.

Триплоиды

Прежде чем разбираться с полиплоидией, нужно немного понять, как тела создают новые клетки. Все человеческие клетки диплоидные, поэтому, когда создаются гаметы, они должны быть гаплоидными, или иметь только один набор хромосом, чтобы новый организм снова мог быть диплоидным. Однако во время этого процесса иногда что-то идет не так. Наиболее распространенным явлением является то, что иногда одна новая гамета получает две копии хромосом. Это может произойти, когда самки производят яйцеклетки. Когда яйцо с двумя наборами хромосом сливается с нормальным гаплоидным сперматозоидом, результирующая клетка имеет три набора хромосом, то есть она триплоидная.

Теперь каждая клетка в этом новом организме будет триплоидной. Для большинства животных это крайне вредно, и организм не выживет. Растения, как правило, лучше переносят полиплоидию и даже процветают с такими интенсивными генетическими изменениями.

Преимущества полиплоидии

В большом числе полиплоидных клеток растений, рыб и лягушек, очевидно, должны быть некоторые преимущества. Общим примером в растениях является наблюдение гибридной энергии, или гетерозиса, в результате чего полиплоидное потомство двоих диплоидных предшественников, является более энергичным и здоровым, чем любой из двух диплоидных родителей. Существует несколько возможных объяснений этого наблюдения. Первый заключается в том, что принудительное спаривание гомологичных хромосом предотвращает рекомбинацию между геномами исходных предшественников, эффективно поддерживая гетерозиготность в течение поколений.

Эта гетерозиготность предотвращает накопление рецессивных мутаций в геномах последующих поколений, тем самым поддерживая гибридную энергию. Другим важным фактором является избыточность генов в клетках растений. Поскольку у полиплоидного потомства в два раза больше копий какого-либо конкретного гена, потомство защищено от пагубных последствий рецессивных мутаций

Это особенно важно во время стадии гаметофита

Другим преимуществом, обеспечиваемым избыточным положением генов, является способность диверсифицировать функцию генов с течением времени. Другими словами, дополнительные копии генов, которые не требуются для нормальной функции организма, могут в конечном итоге использоваться по-новому и совершенно по-разному, что приводит к новым возможностям. В эволюционном выборе они играют чуть ли не решающую роль. Полиплоиды важны в происхождении новых видов растений.

  • Что такое иконостас кратко

      

  • Проект что можно сделать из мусора начальная школа

      

  • Положение о волонтерской деятельности в доу

      

  • Кто что скажет все равно ася петрова краткое содержание

      

  • Почему в красноярском крае не закрывают школы на карантин

Природная полиплоидия у амфибий

Рассмотрена проблема полиплоидии у амфибий. Ныне известны 53 полиплоидных вида из 15 родов и 10 семейств. Все они встречаются только среди бесхвостых амфибий. Эти виды можно распределить по 4 группам с разным уровнем плоидности: I (триплоиды) 4 вида Bufotes, II (тетраплоиды) 33 вида из 14 родов и 10 семейств, III (октоплоиды) 12 видов из 3 родов и 3 семейств и IV (додекаплоиды) 4 вида из рода Xenopus. Известен лишь один таксон надвидового уровня (подрод Xenopus), полностью состоящий из полиплоидных видов (от 4n до 12n). Среди амфибий насчитывается не менее 10 диплоидно-полиплоидных комплексов. В природе триплоидные особи могут возникать в зоне гибридизации дии тетраплоидных видов, а также с невысокой встречаемостью в пределах диплоидных видов. Кроме того, полиплоидные особи (от 3n до 5n) обычны среди диплоидно-полиплоидных гибридогенных форм, размножение которых происходит за счет различных типов клонального наследования (Ambystoma и Pelophylax). Концепция сетчатого (гибридогенного)…

Еще термины по предмету «Биология»

Биомолекулы

органические высокомолекулярные соединения, которые синтезируются естественным образом только в живых системах. Белки, липиды, углеводы, нуклеиновые кислоты.

Импеданс биологической ткани

полное электрическое сопротивление биологической ткани переменному току. В области низких частот импеданс тканей определяется, в основном, их резистивными свойствами. К этой области относятся ткани, обладающие высокой
электропроводностью (нервная ткань). В область средних частот основной вклад в импеданс дают ткани, электрические свойства которых определяются и резистивными, и емкостными свойствами
(паренхиматозные органы). В области высоких частот электрические свойства тканей носят емкостной характер (мембраны, липиды). Замедленные механизмы поляризации в этой области частот могут приводить к значительным диэлектрическим потерям в тканях (нагревание).

Приспособленность организмов

относительная целесообразность строения и функций организма, явившаяся результатом естественного отбора, устраняющего неприспособленных в данных условиях существования особей.

  • Полиплоид

  • Полиплоидия, Polyploidia

  • Аборигены (автохтоны)

  • Биологический прогресс

  • Биомолекулы

  • Диссимиляция

  • Дифицеркальный плавник

  • Каталитический активный центр

  • Катастрофизм

  • кДНК

  • Клетка

  • Кутис (кориум, собственно кожа)

  • Лимфогенный

  • Нейроны

  • Пептидаза

  • Перекисное окисление липидов (ПОЛ)

  • Приспособленность организмов

  • Сферическая аберрация глаза

  • Фибронектин

  • Экологическая валентность

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдаленную) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведет к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, а с другой приводит к снижению жизнеспособности, продуктивности и вырождению.

Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрестное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом. Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдаленная) гибридизация — скрещивание разных видов. Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы и осла, лошак — гибрид коня и ослицы). Обычно отдаленные гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдаленных гибридов растений удается с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия — увеличение числа хромосомных наборов. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины:

  1. удвоение хромосом в неделящихся клетках,
  2. слияние соматических клеток или их ядер,
  3. нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом.

Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Мутагенез

Метод, сопровождающийся изменением структуры генов организма в ходе мутагенного воздействия. Различают спонтанный и индуцированный, оба действуют, повреждая ДНК. Факторы, вносящие дефекты в генетический аппарат, носят определение мутагенов и ведут к мутациям (генным перестройкам).

Механизмы индукции: апуринизация, дезаминирование, образование тиминовых димеров.

Мутантов выбирают на основе мониторинга и фенотипических параметров. В первом случае селекционеры выполняют количественное исследование нового параметра среди организмов, оказавшихся влиянием мутагенного воздействия. При втором учитывают фенотип, развившийся вследствие воздействия мутагена: ауксотрофность, резистентность и др.

Понравилась статья? Поделиться с друзьями:
Карта знаний
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: