Основные свойства магнитного поля
- Магнитное поле образуется любыми движущимися зарядами: ионами электролита и газа, электронами и дырками полупроводника, связанными зарядами при движении наэлектризованного диэлектрика.
- Если в отношении к определенной системе отсчета электрический заряд находится в состоянии покоя, то в этой системе отсчета он создает только электростатическое поле. Движущийся относительно данной системы отсчета заряд создает в этой системе магнитное поле наряду с электрическим.
- Благодаря магнитному полю взаимодействуют между собой движущиеся электрические заряды.
- Существование магнитного поля в определенной области пространства связано с наличием силы, действующей на проводник с током или на движущийся электрический заряд.
- Для обнаружения магнитного поля применимы различные физические эффекты. Например, может измениться электрическое сопротивление некоторых веществ под воздействием магнитного поля или линейные размеры тел, находящихся в поле. Также может произойти намагничивание тел в магнитном поле или возникнуть ЭДС индукции в проводнике, который движется в магнитном поле.
- Магнитное поле не потенциально, что означает зависимость работы в магнитном поле главным образом от формы траектории, и в случае замкнутого контура она отличается от нуля.
Также можно перечислить некоторые свойства веществ при магнитном взаимодействии:
- Вещества по виду взаимодействия в магнитном поле делятся на три основных типа: диамагнитные, парамагнитные и ферромагнитные.
- Диамагнитные свойства проявляют все вещества. Это способность намагничиваться навстречу приложенному магнитному полю. Диамагнетиками называются вещества, магнитные моменты атомов которых в отсутствии внешнего поля равны нулю, т. к. магнитные моменты всех электронов атома взаимно скомпенсированы (например инертные газы, водород, азот, NaCl и др.). Магнитная восприимчивость диамагнетиков всегда меньше нуля.
- Парамагнитные свойства могут проявлять вещества с атомами, имеющими магнитный момент. Суть явления в свойстве веществ (парамагнетиков) намагничиваться в направлении внешнего магнитного поля, и в отличие от ферро-, ферри- и антиферромагнетизма, парамагнетизм не связан с магнитной атомной структурой, а в отсутствие внешнего магнитного поля намагниченность парамагнетика равна нулю. Магнитная восприимчивость при этом больше нуля и уменьшается с ростом температуры.
- Ферромагнетизм является очень сильным коллективным эффектом. Причем магнитная восприимчивость и проницаемость вещества становятся неоднозначными функциями поля и зависят от его истории. Характерные ферромагнитные явления — спонтанная намагниченность и гистерезис намагниченности. Коэрцитивная сила магнитожестких кантилеверов (с кобальтовым покрытием) составляет порядка 400 эрстед, а магнитомягких (с покрытием) — менее 10 эрстед
История открытия
Изучение магнитного поля началось в 1269 году французским ученым Петром Перегрином. Он отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» по аналогии с полюсами Земли.
Связь электрических и магнитных явлений подробно изучалась учеными в XIX веке. Эрстед в 1819 году обнаружил отклонение стрелки компаса, расположенного вблизи проводника с током, и тогда ученым был сделан вывод о существовании некой взаимосвязи между электрическими и магнитными явлениями.
Спустя 5 лет, в 1824 году, Ампер сумел математически описать взаимодействие токонесущего проводника с магнитом, а также взаимодействие проводников между собой. Так появился Закон Ампера.
Еще через 7 лет, в 1831 году, Фарадей опытным путем обнаружил явление электромагнитной индукции — ему удалось установить факт появления в проводнике электродвижущей силы в момент, когда на этот проводник действует изменяющееся магнитное поле. Фарадей в частности, ввел понятие поля.
По мнению А. Эйнштейна идея поля была самым важным открытием со времен Ньютона. У Ньютона пространство пассивно, это простое вместилище, в котором располагаются тела. У Фарадея пространство (поле) участвует в явлениях. Поле, как и вещество, является видом материи.
Фарадей ввел понятие о силовых линиях электрического и магнитного полей, а также сделал ряд других открытий в области физики, в том числе им было открыто явление электромагнитной индукции.
Магнитное поле проводника с током
Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.
Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.
Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.
При изменении направления тока линии магнитного поля также изменяют свое направление.
По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.
Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.
Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.
В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.
Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.
Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.
Направление линий магнитной индукции катушки с током находят по правилу правой руки:
если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.
Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:
если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.
Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.
Электромагниты
В 1269 г. французский естествоиспытатель Пьер Мари Кур написал труд под названием «Письмо о магните». Основной целью Пьера Мари Кура было создание вечного двигателя, в котором он собирался использовать удивительные свойства магнитов. Насколько успешными были его попытки не известно, но достоверно то, что Якоби использовал свой электродвигатель для того, чтобы привести в движение лодку, при этом ему удалось её разогнать до скорости 4,5 км/ч.
Необходимо упомянуть ещё об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведёт себя подобно постоянному магниту, а это значит – можно сконструировать электромагнит – устройство, мощность которого можно регулировать.
Магнитные линии
Магнитные линии у прямолинейных элементов с высокой проводимостью тока имеют форму плотной концентрической окружности, центр которой находится на оси определенного проводника.
Замечание 2
Направление этих показателей возле проводников можно определить по правилу буравчика, которое интерпретируется следующим образом: если буравчик расположить так, что он будет постоянно ввинчиваться в движущийся проводник по направлению тока, тогда курс обращения самой рукоятки будет совпадать с назначением магнитных линий.
Правильное определение неоднородности и однородности является главной характеристикой магнитного поля. Эти составляющие, которые создаются при равных условиях одним током, будут иметь неоднозначную направленность и интенсивность в различных пространствах из-за движущихся магнитных свойств в данных веществах. Магнитная специфик окружающей среды характеризуются стабильной проницаемостью магнитов и измеряется физиками в генри на метр (г/м). В свойства исследуемого поля также можно отнести абсолютную магнитная проницаемость пустоты, которая называется магнитной постоянной.
Определение 2
Магнитная проницаемость – это определенное значение, которое определяет, как часто абсолютная магнитная проницаемость пространства будет отличаться от постоянной, относительной проницаемостью магнитов.
Магнитное поле оказывает непосредственное влияние на:
- изменяющиеся электрические заряды;
- вещества, посредством которых определяют проницаемость поля;
- постоянные магниты – подразумевающие общий магнитный момент всех заряженных частиц.
В магнитном процессе силовые линии возникают при сближении стабильного магнита к бумажному листу, на который необходимо насыпать слой железных опилок.
Изменения магнитных свойств материалов
При увеличении постоянства силы тока до полноценного насыщения в катушке с ферромагнитным элементами и последующим ее исчезновением, кривая намагничивания не может совпадать с линией размагничивания. С нулевой, невидимой напряженностью индукция в такой среде не будет иметь значение, а получит некий показатель, именуемый в физике остаточной магнитной индукцией.
Ситуацию с уменьшением индукции в магнитном поле от намагничивающей интенсивности физики называют гистерезисом. Для полного размагничивания процесса в элементах сердечника необходимо предоставить обратной направленности ток, с помощью которого появится элемент напряженности. Для разных ферромагнитных частиц важен отрезок различной длины. Значение, при котором будет осуществляться конечное размагничивание материала, именуется коэрцитивной силой.
При дальнейшем повышении действия тока в катушке магнитная индукция начинает увеличиваться до уровня насыщения, однако с абсолютно другими направлениям линий. При полном размагничивании в противоположном направлении возможно получить остаточную индукцию, которая используется при разработке постоянных магнитов из элементов с большим коэффициентом остаточного магнетизма. С помощью имеющих способность к перемагничиванию веществ ученые создают создаются сердечники для электрических приборов и машин.
Соленоид
А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.
Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.
Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.
Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.
Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.
Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.
где
I — это сила тока в катушке, Амперы
N — количество витков катушки, штуки)
Также советую посмотреть очень простое и интересное видео про магнитное поле.
Как происходит взаимодействие электрического и магнитного полей
Первые достаточно точные обоснования и выводы (как теоретические, так и практические) по результатам исследований процессов внутри данных полей сделал великий ученый Д. Максвелл. Он показал, какая взаимосвязь происходит между эклектическими зарядами и протекающими токами электромагнитного поля. Для проведения исследований и получения результатов, были применены ранее сформулированные законы Ампера и Фарадея. В трудах физика было определено точное соотношение между электрическим и магнитным полем, которое возникало вследствие определенного способа распределения зарядов в пространстве.
Что такое ЭМП, его виды и классификация
ЭМП состоит из двух составляющих: электрического поля, создаваемого электрическими зарядами заряженных частиц в пространстве, и магнитного поля, образующегося при движении электрических зарядов по проводнику.
Соответственно, электромагнитные поля можно разделить на два вида:
- статическое, то есть излучаемое заряженными телами (частицами) и неотъемлемое от них;
- динамическое, распространяющееся в пространстве, будучи оторванным от источника, излучившего его.
Динамическое электромагнитное поле в физике представляют в виде двух взаимно перпендикулярных волн: электрической (Е) и магнитной (Н).
Различают электромагнитные поля:
- высокой частоты;
- промышленной частоты (50 Гц);
- электростатические поля — электрическое поле неподвижных электрических зарядов либо стационарное электрическое поле постоянного тока;
- постоянные магнитные поля — генерируемые постоянным током.
Электромагнитные поля промышленной частоты (ЭМП ПЧ), являющиеся частью сверхнизкочастотного диапазона радиочастотного спектра, наиболее распространены как в производственных условиях, так и бытовых. Диапазон промышленной частоты представлен в России частотой 50 Гц (в ряде стран Американского континента — 60 Гц).
Основными источниками ЭМП ПЧ, создаваемыми в результате деятельности человека, являются различные типы производственного и бытового электрооборудования переменного тока.
Поскольку соответствующая частоте 50 Гц длина волны составляет 6000 км, человек подвергается воздействию фактора в ближней зоне. В связи с этим, гигиеническая оценка ЭМП ПЧ осуществляется раздельно по электрической и магнитной составляющим (ЭП и МП ПЧ).
Постоянное магнитное поле — что это такое
Магнитное поле – это материя, возникающая вокруг постоянных магнитов или источников электрического тока. В пространстве оно представляет собой совокупность сил, способных оказывать воздействие на намагниченные тела. Это происходит из-за наличия на молекулярном уровне движущих разрядов.
Свойства магнитного поля:
- возникает в результате изменения электрического поля во времени;
- вектор магнитной индукции – основная величина, характеризующей интенсивность и направление магнитного поля, измерения производятся в Теслах ;
- образуется только при перемещении заряда;
- измеряется специальными приборами – датчиками, не воспринимается органами чувств человека;
- распространяется в пространстве с конечной скоростью, равной скорости света в вакууме;
- постоянный и переменный тип действия.
Как правило, переменное поле можно образовать индукторами, функционирующими от переменного тока.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут
Магнитное поле называют постоянным, если значение вектора магнитной индукции не изменяется со временем в каждой его точке. Такое поле существует вокруг неподвижного проводника с постоянным током или неподвижного магнита.
Свойства магнитного поля
Рисунок 2. Свойства магнитного поля. Автор24 — интернет-биржа студенческих работ
Ключевым преимуществом и свойством магнитного поля считается относительность. Если данный критерий оставить в заряженном теле недалеко от системы отсчета и расположить по соседству магнитную стрелку, то она начнет указывать на север, и при этом не «увидит» стороннего поля, кроме поля нашей планеты. А если заряженное током тело будет двигаться возле указанной стрелки, то вокруг вещества возникнет магнитное поле.
Источники магнитного поля можно разделить на такие составляющие:
- электрическое пространство, меняющееся во времени;
- подвижные и постоянные заряды;
- заряженные током магниты.
В детстве многие были знакомы с магнитами, которые использовались в качестве игрушек, притягивающих к себе различные металлические детали. Их прикрепляли к холодильнику или же они были встроены в различные детские безделушки.
Электрические заряды, находящиеся в движении, чаще всего имеют намного больше магнитной энергии, если сравнить их с постоянными магнитами. Ученые установили причину, по которой физические тела получают определенные магнитные свойства. Согласно теории исследователей, внутри всех веществ есть электрические токи, имеющие микроскопическую величину. Электрон оснащен своим магнитным значением и имеет квантовую природу движения по орбите в атомах.
Магнитное поле способно влиять и воздействовать на меняющийся электрический ток. Его возможно обнаружить, если тестировать движение всех заряженных электронов. В магнитном процессе частицы с зарядом отклонятся, в результате чего проводники с движущимся током начнут уменьшаться.
Замечание 3
Данное явление не может быть воспринято человеческими органами, так как его реально зафиксировать только посредством соответствующих датчиков и приборов.
Магнитное поле бывает постоянного и переменного вида, а создается с помощью определенных индикаторов, функционирующих от переменного тока. Постоянное поле возникает только в неизменным электрическим полем.
Коэффициент такой пропорциональности называется индуктивностью основного проводника и обозначает возможность элемента создавать потокосцепление при трансформации электричества в силу тока, расположенную в контуре магнитного потока. Вышеуказанные определения и процессу помогают понять, что же собой представляет магнитное поле.
Физические свойства и основные характеристики
Из явления электромагнитной индукции известно, что при всяком изменении магнитного потока, охватываемого замкнутым проводником, в проводнике возникает индукционный ток, т.е. движение электрических зарядов. Но заряды могут двигаться под действием электрического поля: следовательно, изменение магнитного поля порождает электрическое поле.
В отличие от электрического поля, создаваемого неподвижными зарядами, силовые линии электрического поля, возникающего при изменении магнитного поля, замкнуты. Такое поле называют вихревым.
Чем быстрее изменяется со временем магнитное поле, т. е. чем больше ΔΦ/Δt, тем больше напряженность возникающего электрического поля.
Когда речь идет об изменении магнитного потока, то подразумевается либо его увеличение, либо уменьшение со временем. Если ΔΦ=0, электрическое поле не возникает. Чтобы выяснить, порождает ли меняющееся электрическое поле магнитное, рассмотрим схему:
Между параллельными металлическими дисками установки на горизонтальных осях смонтированы магнитные стрелки. Диски расположены перпендикулярно индукции магнитного поля Земли. При замыкании цепи между дисками появляется электрическое поле. В момент появления электрического поля стрелки поворачивается так же, как при прохождении по проводнику электрического тока.
Затем они возвращаются в исходное состояние. Если теперь разомкнуть цепь, то никакого воздействия на стрелки оказано не будет, так как несмотря на оставшиеся на дисках заряды, электрическое поле не меняется. Но при замыкании дисков проводом заряды нейтрализуются, электрическое поле исчезает. В момент исчезновения электрического поля стрелки вновь стремятся повернуться, но в другую сторону.
Таким образом, при изменении электрического поля со временем появляется магнитное поле. Так же, как магнитное поле, создаваемое электрическим током, оно будет вихревым (линии магнитной индукции замкнуты).
Одной из задач электродинамики является изучение свойств электромагнитного поля.
В частности, к электромагнитным волнам относится свет. Человечество широко использует электромагнитные волны, передавая теле- и радиосигналы.
Магнитная индукция
Магнитная индукция (МИ) — силовое определение МП. Это векторная величина.
Одной из главных характеристик МП является векторный потенциал.
Формула индукции магнитного поля измеряется через вектор магнитной индукции (В).
В=Fmax/I*l ,
где Fmax — наибольшая сила, воздействующая от МП на проводнике; I — сила тока в проводнике; l — длина.
Вектор МИ имеет единицы измерения — теслы (Тл).
Направление вектора МИ — это направление от южного полюса к северному магнитной стрелки, установленной в МП.
Линия МИ — несуществующая прямая, где в любом месте вектор МИ направлен к ней по касательной.
Свойства магнитной линии:
- постоянность;
- замкнутость;
- ориентированность.
Чем больше магнитных линий, тем сильнее МП.
Если рассматривать МП в свободном пространстве (без окружающей его среды), то используют понятие не вектор МИ, а вектор напряженности (Н), равный разности вектора МИ и вектор намагниченности (М).
Н = В — М
Если полей более одного, то вектор МИ определяется по принципу суперпозиции: МИ основного поля, которое состоит из многих источников, можно найти через сумму МИ всех полей, входящих в состав МП.
Что такое однородное и неоднородное магнитное поле
Однородное магнитное поле — это магнитное поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.
В однородном магнитном поле заряженная частица, движущаяся со скоростью \( \overrightarrow v\) перпендикулярно линиям индукции, подвергается воздействию силы \(\overrightarrow{F_л}\), постоянной по модулю и направленной перпендикулярно вектору скорости \(\overrightarrow v\). В таком поле магнитная индукция B во всех точках одинакова по модулю и направлению.
Благодаря силе Лоренца в однородном поле частицы движутся равномерно по окружности с центростремительным ускорением.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут. Сила Лоренца \(\overrightarrow{F_л}\) — электромагнитная сила со стороны магнитного поля, действующая на движущийся заряд q:
Сила Лоренца \(\overrightarrow{F_л}\) — электромагнитная сила со стороны магнитного поля, действующая на движущийся заряд q:
\(F=qE+q\left\)
Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что частица равномерно движется по окружности с радиусом r.
Радиус r окружности определяется как частное произведения массы m со скоростью v и произведения электрического заряда q с индукцией B.
Радиус траектории движения частицы с постоянной массой и ее скорость не влияют на период ее обращения в однородном поле.
В однородном магнитном поле максимальный вращающий момент \(M_{max}\) при воздействии замкнутых проводников, изготовленных из очень тонкой проволоки разных размеров и форм, с током приобретает свойства:
- Он пропорционален силе тока в контуре I.
- Пропорционален площади контура.
- Для контуров с одинаковой площадью не зависит от их формы.
Таким образом, максимальный вращающий момент становится пропорциональным магнитному моменту \(P_{m}\) контура с током:
\(P_m=I\ast S.\)
Величина магнитного момента \(P_{m}\) характеризует действие магнитного поля на плоский контур с током.
В данном случае значение вращающего момента \(M_{max}\), действующего на контур с магнитным моментом \(P_{m}\), принимают равным единице.
Следовательно, формула для определения индукции B в однородном магнитном поле приобретает вид:
\(B=\frac{M_{max}}{P_m}.\)
Примеры однородных магнитных полей:
- Магнитное поле внутри соленоида. Соленоид — длинная цилиндрическая катушка, состоящая из нескольких витков плотно намотанной по винтовой лестнице проволоки. Каждый виток создает свое магнитное поле, которое складывается с другими в общее поле. Оно является однородным при условии, что длина катушки значительно превосходит ее диаметр. Тогда внутри соленоида линии поля будут параллельными его оси и прямыми.
- Магнитное поле внутри тороидальной катушки. Здесь линии замыкаются внутри самой катушки. Представлены в виде окружностей, параллельных оси тора. Токи в обмотке тороидальной катушки текут равномерно по часовой стрелке.
Неоднородное магнитное поле — это магнитное поле, в котором сила, действующая на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.
В неоднородном магнитном поле магнитная индукция в разных местах имеет различные модули и направления. Для вычисления значения вектора \(\overrightarrow B\) в неоднородном поле необходимо определить вращающий момент, действующий на него. Для этого в некую точку помещают контур размеров, меньших в сравнении с расстояниями, на которых поле заметно меняется.
Примеры неоднородных магнитных полей:
- Снаружи соленоида. Линии на концах катушки соленоида не являются параллельными друг другу и тянутся от одного конца к другому. А снаружи вблизи боковой поверхности катушки поле практически отсутствует.
- Снаружи полосового магнита. Магнитное поле полосового магнита подобно полю вокруг соленоида. Магнитные линии тянутся от одного конца магнита к другому по направлению от северного полюса к южному. Имеется нейтральная зона.
Отличия однородного и неоднородного магнитных полей
- Однородное поле находится внутри проводника или магнита, неоднородное — снаружи.
- В однородном поле сила, действующая в разных точках, одинакова. В неоднородном — различна.
- Линии однородного магнитного поля являются одинаковыми по густоте и параллельными друг другу. В неоднородном поле линии отличаются по густоте и искривлены.
- Линии магнитной индукции однородного поля находятся на равном расстоянии друг от друга.
Возникновение поля
Для того, чтобы понять принцип действия магнитного поля, стоит для начала описать его возникновение. Указанное физическое явление возникает в ходе трансформации заряженных частиц и может воздействовать на движущиеся электрические заряды, в частности на токопроводящие элементы.
Взаимосвязь между магнитным полем и перемещающимися зарядами и проводниками, по которым систематически течет ток, происходит посредством сил, называемыми электромагнитными. Интенсивность или силовую специфику магнитного поля в конкретной пространственной точке можно более точно определить с помощью постоянной индукции, которая обозначается символом В.
Линии индукции помогают представить весь процесс и его особенности в графической форме, которая предоставит все нюансы этой системы. Таким определением называют определенные линии, касательные которых абсолютно в любой точке совпадают с направлением основного вектора в магнитном процессе. Названные пути входят в характеристику поля и используются для точного установления его интенсивности и направленности. Чем выше насыщенность магнитного поля, тем больше указанных линий будет включено в работу.
Опыт Эрстеда
Довольно продолжительное время электрические и магнитные поля изучались раздельно. Их взаимосвязь была обнаружена совершенно случайно. Существует легенда, что Кристиан Эрстед показывал ученикам на своей лекции в университете влияние толщины проводника на силу тока. При этом на демонстрационном столе лежал компас, оставшийся от предыдущей лекции
Во время рассказа Эрстеда о природе нагрева проволоки, один из его студентов обратил внимание, что стрелка компаса изменила положение. Этот эффект после позволил учёному утверждать, что на магнитную стрелку, расположенную вблизи с проводником тока, действуют силы, стремящие её развернуть. Проведя ряд опытов, учёный установил, что на направление указателя влияла полярность подключения источника питания
При её изменении стрелка сразу же изменяла своё направление на противоположное. Но оказалось, что влияние магнитного потока настолько мало, что обнаружить его, возможно, только с помощью чувствительных приборов
Проведя ряд опытов, учёный установил, что на направление указателя влияла полярность подключения источника питания. При её изменении стрелка сразу же изменяла своё направление на противоположное. Но оказалось, что влияние магнитного потока настолько мало, что обнаружить его, возможно, только с помощью чувствительных приборов.
Чтобы более точно представить, по какому принципу происходит поворот магнитной стрелки вблизи проводника с током нужно рассмотреть проволоку с торца. Тогда можно будет изучить два случая:
- ток идёт от наблюдающего;
- заряды двигаются к исследователю.
Если установить множество стрелок вокруг проводника, то окажется, что после пропускания тока они выстроятся так, что образуют своеобразную окружность. При этом их полюса будут противоположны друг другу. Эти стрелки примут положение по касательной к магнитным линиям. Таким образом, можно будет увидеть, что линии, описывающие распространение поля, представляют окружность. Их же направления в первом случае будут по часовой стрелке, а во втором — против.
Это важное свойство магнитных линий и наблюдал Эрстед. Ампер же смог развить исследование дальше. Он установил, что если взять два проводника, разместить их параллельно и пустить по ним токи в одном направлении, то возникает сила притягивания
Если же в одном из них поменять подключение — проводники начинают отталкиваться. Именно благодаря Амперу удалось эмпирически доказать, как происходит взаимодействие проводника, по которому течёт ток, с полем постоянного магнита и описать зависимость зарядов от их направления
Он установил, что если взять два проводника, разместить их параллельно и пустить по ним токи в одном направлении, то возникает сила притягивания. Если же в одном из них поменять подключение — проводники начинают отталкиваться. Именно благодаря Амперу удалось эмпирически доказать, как происходит взаимодействие проводника, по которому течёт ток, с полем постоянного магнита и описать зависимость зарядов от их направления.